In: Statistics and Probability
| 
 CAR  | 
 1  | 
 2  | 
 3  | 
 4  | 
 5  | 
 6  | 
 7  | 
 8  | 
 9  | 
 10  | 
| 
 YI : PRICE  | 
 17  | 
 20.6  | 
 14  | 
 16.4  | 
 17.8  | 
 19.6  | 
 13.2  | 
 33.8  | 
 10  | 
 9.6  | 
| 
 XI: AGE IN YEARS  | 
 5  | 
 4  | 
 6  | 
 5  | 
 5  | 
 5  | 
 6  | 
 2  | 
 7  | 
 7  | 
We also have , ,
The computer printout for the regression line typically looks like the following estimation line indicating is the intercept plus the slope times the X variable. The value for the standard errors of the estimates for the intercept , and for the slope are typically expressed below each term in parenthesis as follows. Note that n = 10.
Each part is worth 5 points.
The regression equation, with standard errors in parentheses, is: e
(1.74662) (0.32434)
SSR = 413.265 SST = 429.759 Note that N = 10 here (10 cars
               =
290,                 =
3388.16, and      =
804.4.  
                   =
19.6                   =
429.76                   =  894.4
Test the hypothesis
Test H0: b1 = 0, vs HA: b1 ≠ 0 at α = .01 or 1% (2 – tailed test).
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 52 | 172 | 19.6 | 429.8 | -90.00 | 
| mean | 5.20 | 17.20 | SSxx | SSyy | SSxy | 
sample size ,   n =   10  
       
here, x̅ = Σx / n=   5.20   ,
    ȳ = Σy/n =   17.20  
          
       
SSxx =    Σ(x-x̅)² =    19.6000  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   -90.0  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   -90.0  
/   19.600   =   -4.5918
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
41.0776          
          
       
so, regression line is   Ŷ =  
41.0776   +   -4.5918  
*x
-------------------------
| Anova table | |||||
| variation | SS | df | MS | F-stat | p-value | 
| regression | 413.265 | 1 | 413.265 | 200.44 | 0.0000 | 
| error, | 16.495 | 8 | 2.062 | ||
| total | 429.760 | 9 | 
a)
Predicted Y at X=   8   is  
           
   
Ŷ =   41.07755   +  
-4.591837   *   8   =  
4.343
b)
MSE = 2.062
C)
Ho:   ß1=   0      
   
H1:   ß1╪   0      
   
n=   10          
   
alpha =   0.01      
       
estimated std error of slope =Se(ß1) = Se/√Sxx =   
1.436   /√   19.60   =  
0.3243
          
       
t stat = estimated slope/std error =ß1 /Se(ß1) =
   -4.5918   /   0.3243  
=   -14.1575
          
       
t-critical value=    3.355   [excel
function: =T.INV.2T(α,df) ]      
   
Degree of freedom ,df = n-2=   8  
           
p-value =    0.0000      
       
decison :    p-value<α , reject Ho  
           
Conclusion:   Reject Ho and conclude that slope is
significantly different from zero      
       
Thanks in advance!
revert back for doubt
Please upvote