In: Economics
1095 14.1 1001 10.9 1122 23.5 578 5.9 1368 13.8 1145 20 1078 16.4 1094 16.3 1237 10.5 833 26.3 567 25.9 933 26.8 1339 14.8 937 22.3 2011 56.3 1585 12.6 905 20.4 1058 1.9 922 19.9 1220 15.4 1022 38.7 759 16.4 1414 24.4 1041 15.6 1688 14.4 2983 19 1160 16.1 3844 12.1 476 16.2 1492 18.4 1024 14.2 1593 14.9 427 12.4 829 17.1 797 16.9 577 18.1 1342 10.9 1774 19.3 709 18.3 860 18.4 1336 13.8 516 13.7 931 12.7 815 15.1 1681 16.5 568 10.2 775 19.6 1188 12.8 782 15.9 1170 17.3 1469 8.5 916 16.4 1070 19.5 894 19.2 829 15.9 780 19.9 2327 28.1 717 25 1368 15 2028 12.6 1195 20.3 256 22.7 775 14.8 1407 13.2 543 10.3 874 17.7 1287 10 1248 15.6 875 6.8 925 12.4 798 13.1 760 15.8 600 12.8 991 15.3 1570 0.5 911 16.5 1360 15.1 700 13 741 11.1 1097 8.9 953 17.5 441 15.9 595 14.2 1067 9.3 1298 9.5 1798 15.5 4143 14.4 1336 11.1 1750 15.9 912 16.4 1892 8.6 833 24.6 1142 15.4 1159 16.9 1283 7.2 2109 11.6 1039 26.4 992 21.4 1253 19.2 721 15.1 1351 9 1391 9.4 1245 19 1550 3.5 2150 22.1 1846 10.9 573 15.1 6640 10.2 959 17.3 612 33.3 1820 22.8 1411 11.1 1026 12.4 1287 20.9 800 6.7 1115 7.1 1631 11.8 1910 14 996 10.1 918 6.4 1261 12.4 1053 17.6 1221 15.1 1738 23.6 3142 35.7 1900 23.2 427 12.4 1700 44.4 360 2.1 459 18.4 1340 16.1 729 15.1 223 22.7 2101 23.4 1082 25.7 1781 27 791 19.9 2092 43.7 1573 16.4 1045 11.6 1694 24.8 453 26.2 1130 44.5 1334 22.3 1344 22.3 1585 35.1 1946 13.1 1619 11 1620 19.4 967 28.5 1431 43.9 1231 26.8 770 15.7 1594 15 1568 28.2 995 15.4 1077 20 1161 42.2 1401 19.6 1127 16.2 3068 21.5 730 29.5 729 22.6 11233 22.9 949 13 3646 7.8 1502 48.1 807 18 713 18 1489 21.7 736 21.3 1226 26.9 543 30.5 14822 19.4 890 15.6 1627 19.4 2408 29.1 2248 40.8 787 13.7 474 11.1 439 10.8 465 5.1 594 12.3 688 7.4 607 6.2 634 12.7 532 10.6 441 7.4 694 12.6 520 12.8 757 2.9 668 13.5 803 10.7 500 11.9 552 12.9 412 10.1 1100 7.3 959 14.6 333 13.8 503 8.9 448 14 732 12.9 720 14.5 808 14.7 930 9 525 15.5 658 12.1 555 13.7 626 14.4
Let Y be annual salary (salary) in thousands of dollars, and X be the average return on equity (roe) for the CEO’s firm for the previous three years. Return on equity is defined to be net income as a percentage of common equity. If roe = 5, than the average return on equity is 5%.
a. We are interested in investigating the relationship between roe, a measure of a firm’s performance and CEO compensation. To do this regress salary on roe and present the results of the regression in the form of an equation. State other relevant output that you obtained from running this regression below the equation, and be sure to summarize your results. You should also include the relevant output of the software you used to estimate your regression.
Based on your results in Part A:
b. Is the estimated intercept coefficient significantly different from 0? State the null and alternative hypothesis you are testing and conduct the hypothesis test at the α = 0.01 level. Explain your work.
c. One might hypothesize that the slope should be greater than 0. Set up a null and alternative hypothesis and conduct a hypothesis test with respect to this statement. Use a 5% level of significance. Explain your work.
d. Discuss the meaning of the slope parameter. That is, what does the slope parameter measure, and how is the predicted value of the dependent variable affected by a 1 unit change in the independent variable?
e. Using the Jargue – Bera (JB) test, determine if the error terms (or disturbances) are normally distributed? Be sure to include the test statistic and the p – value in your answer. Explain your work.
f. Suppose the roe = 30. What salary would you predict for the CEO of this firm? (remember that salary is given in 000s)
Answering first four parts:
a) for the relationship between roe and ceo compensation, salary is regressed on roe. It is done using R software.
salary= (alpha) + (beta)roe + error
Intercept coefficient obtained in this case is 963.2
slope coefficient: 18.5
other summaries are:
Residuals: Min 1Q Median 3Q Max -1160.2 -526.0 -254.0 138.8 13499.9 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 963.19 213.24 4.517 1.05e-05 *** x 18.50 11.12 1.663 0.0978 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 1367 on 207 degrees of freedom Multiple R-squared: 0.01319, Adjusted R-squared: 0.008421 F-statistic: 2.767 on 1 and 207 DF, p-value: 0.09777
b)