Question

In: Physics

Place a sheet of paper on the table in front of the mirror then use the...

  • Place a sheet of paper on the table in front of

the mirror then use the ruler to trace the pathway

of the beam to and from the mirror.

  • Label the incidence beam and the reflective beam.
  • Using a protractor, measure these angles in

degrees. Record your results in the table below.

Trial

Angle of incidence θi

Angle of Reflection , θr

1

2

3

4

Draw the normal and reflected rays knowing the
Law of Reflection (qi=qr) . Write the values of the angle of incidence and angle of reflection in the table above.

How do the angle of incidence and the angle of reflection compare for each trial?

Solutions

Expert Solution


Related Solutions

Why must you place and object in front of concave mirror with radius R so that...
Why must you place and object in front of concave mirror with radius R so that the image is erect and 2.5 times the size of the object? Where is the image located?
You place a mirror 10 cm in front of your face, which creates an upright image...
You place a mirror 10 cm in front of your face, which creates an upright image that is twice the height of the object. You then move the mirror along the principle axis until it creates an inverted image twice the height of the object. What kind of mirror must this be and why? Where is the object with respect to the mirror’s focal length for each of the mirror positions? (ie. f < s < R) Draw ray diagrams...
For a convex mirror, when the object is 24.2 cm in front of the mirror the...
For a convex mirror, when the object is 24.2 cm in front of the mirror the image is 15.4 cm behind the mirror. If the object is moved to a distance of 14.5 cm in front of the mirror, determine the distance of the image behind the mirror (cm)
24. Suppose you stand in front of a plane mirror. Your reflected image in the mirror...
24. Suppose you stand in front of a plane mirror. Your reflected image in the mirror is as far behind the mirror as half your height. half your distance from the mirror. your distance from the mirror. twice your distance from the mirror.
A lamp is twice as far in front of a plane mirror as a person is....
A lamp is twice as far in front of a plane mirror as a person is. Light from the lamp reaches the person via two paths. It strikes the mirror at a 36.1° angle of incidence and reflects from it before reaching the person. The total time for the light to travel this path includes the time to travel to the mirror and the time to travel from the mirror to the person. The light also travels directly to the...
An upright object is placed in front of a concave mirror. The radius of curvature of...
An upright object is placed in front of a concave mirror. The radius of curvature of mirror is 40 cm. (a) Where should the object be placed in order to obtain an image that is twice as large as the object? (b) Is the image upright or inverted? SHOW ALL STEPS & DIAGRAM
A small ball is held at a point—A, B, or C—in front of a plane mirror,...
A small ball is held at a point—A, B, or C—in front of a plane mirror, as shown in (Figure 2) . Rank points A, B, and C according to the distance between the actual ball and the image of the ball, from greatest to smallest. If any two ball locations produce the same distance between the ball and its image, overlap the location points.
When an object is placed 10 cm in front of a mirror, an image is formed...
When an object is placed 10 cm in front of a mirror, an image is formed 45 cm behind the mirror. What is the mirror’s focal length?
A concave makeup mirror is designed so that a person 26 cm in front of it...
A concave makeup mirror is designed so that a person 26 cm in front of it sees an upright image magnified by a factor of two. What is the radius of curvature of the mirror? R=_ in m
Plane Mirrors: The image formed in a plane mirror is at the same distance in front...
Plane Mirrors: The image formed in a plane mirror is at the same distance in front of the mirror as the object is in front of the mirror. at a larger distance behind the mirror than the distance the object is in front of the mirror. at the same distance behind the mirror as the object is in front of the mirror. at a shorter distance behind the mirror than the distance the object is in front of the mirror....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT