In: Statistics and Probability
a.
TRADITIONAL METHOD
given that,
mean(x)=18.72
standard deviation , s.d1=5.16
number(n1)=44
y(mean)=21.2
standard deviation, s.d2 =6.17
number(n2)=33
I.
calculate pooled variance s^2= (n1-1*s1^2 + n2-1*s2^2
)/(n1+n2-2)
s^2 = (43*26.626 + 32*38.069) / (77- 2 )
s^2 = 31.508
II.
standard error = sqrt(S^2(1/n1+1/n2))
=sqrt( 31.508 * (1/44+1/33) )
=1.293
III.
margin of error = t a/2 * (standard error)
where,
t a/2 = t -table value
level of significance, α = 0.02
from standard normal table, two tailed and value of |t α| with
(n1+n2-2) i.e 75 d.f is 2.377
margin of error = 2.377 * 1.293
= 3.073
IV.
CI = (x1-x2) ± margin of error
confidence interval = [ (18.72-21.2) ± 3.073 ]
= [-5.553 , 0.593]
-----------------------------------------------------------------------------------------------
DIRECT METHOD
given that,
mean(x)=18.72
standard deviation , s.d1=5.16
sample size, n1=44
y(mean)=21.2
standard deviation, s.d2 =6.17
sample size,n2 =33
CI = x1 - x2 ± t a/2 * sqrt ( s^2 ( 1 / n1 + 1 /n2 ) )
where,
x1,x2 = mean of populations
s^2 = pooled variance
n1,n2 = size of both
a = 1 - (confidence Level/100)
ta/2 = t-table value
CI = confidence interval
CI = [( 18.72-21.2) ± t a/2 * sqrt( 31.508 * (1/44+1/33) ]
= [ (-2.48) ± 3.073 ]
= [-5.553 , 0.593]
-----------------------------------------------------------------------------------------------
interpretations:
1. we are 98% sure that the interval [-5.553 , 0.593]contains the
true population proportion
2. If a large number of samples are collected, and a confidence
interval is created
for each sample, 98% of these intervals will contains the true
population proportion
b.
TRADITIONAL METHOD
given that,
mean(x)=18.72
standard deviation , s.d1=5.16
number(n1)=44
y(mean)=21.2
standard deviation, s.d2 =6.17
number(n2)=33
I.
standard error = sqrt(s.d1^2/n1)+(s.d2^2/n2)
where,
sd1, sd2 = standard deviation of both
n1, n2 = sample size
standard error = sqrt((26.626/44)+(38.069/33))
= 1.326
II.
margin of error = t a/2 * (standard error)
where,
t a/2 = t -table value
level of significance, α = 0.02
from standard normal table, two tailed and
value of |t α| with min (n1-1, n2-1) i.e 32 d.f is 2.449
margin of error = 2.449 * 1.326
= 3.248
III.
CI = (x1-x2) ± margin of error
confidence interval = [ (18.72-21.2) ± 3.248 ]
= [-5.728 , 0.768]
-----------------------------------------------------------------------------------------------
DIRECT METHOD
given that,
mean(x)=18.72
standard deviation , s.d1=5.16
sample size, n1=44
y(mean)=21.2
standard deviation, s.d2 =6.17
sample size,n2 =33
CI = x1 - x2 ± t a/2 * Sqrt ( sd1 ^2 / n1 + sd2 ^2 /n2 )
where,
x1,x2 = mean of populations
sd1,sd2 = standard deviations
n1,n2 = size of both
a = 1 - (confidence Level/100)
ta/2 = t-table value
CI = confidence interval
CI = [( 18.72-21.2) ± t a/2 * sqrt((26.626/44)+(38.069/33)]
= [ (-2.48) ± t a/2 * 1.326]
= [-5.728 , 0.768]
-----------------------------------------------------------------------------------------------
interpretations:
1. we are 98% sure that the interval [-5.728 , 0.768] contains the
true population proportion
2. If a large number of samples are collected, and a confidence
interval is created
for each sample, 98% of these intervals will contains the true
population proportion
c.
part (a) 98% sure that the interval [-5.553 , 0.593] with equal
variances.
part (b) 98% sure that the interval [-5.728 , 0.768] with unequal
variances.
slight change in the confidence interval.