In: Statistics and Probability

A study was conducted to estimate the difference in the mean salaries of elementary school teachers from two neighboring states. A sample of 10 teachers from the Indiana had a mean salary of $28,900 with a standard deviation of $2300. A sample of 14 teachers from Michigan had a mean salary of $30,300 with a standard deviation of $2100. Determine a 95% confidence interval for the difference between the mean salary in Indiana and Michigan.(Assume population variances are different.)

*Include null and alternate hypothesis, a p-value, and a conclusion PRIVATE about the null hypothesis*

A study was conducted to determine if the salaries of elementary
school teachers from two neighboring districts were equal. A sample
of 15 teachers from each district was randomly selected. The mean
from the first district was $28,900 with a standard deviation of
$2300. The mean from the second district was $30,300 with a
standard deviation of $2100. Assume the samples are random,
independent, and come from populations that are normally
distributed. Construct a 95% confidence interval for μ1 -...

Salaries for teachers in a particular elementary school district
are normally distributed with a mean of $44,000 and a
standard deviation of $6,500. We randomly survey ten teachers from
that district.
1.Find the probability that the teachers earn a total of over
$400,000
2.If we surveyed 70 teachers instead of ten, graphically, how
would that change the distribution in part d?
3.If each of the 70 teachers received a $3,000 raise,
graphically, how would that change the distribution in part...

A researcher claims that the mean of the salaries of elementary
school teachers is greater than the mean of the salaries of
secondary school teachers in a large school district. The mean of
the salaries of a random sample of 26 elementary school teachers is
$48,250 and the sample standard deviation is $3900. The mean of the
salaries of 24 randomly selected secondary school teachers is
$45,630 with a sample standard deviation of $5530. At ? = 0.05, can
it...

Salaries for teachers in a particular elementary school district
are normally distributed with a mean of $44,000 and a standard
deviation of $6,500. We randomly survey ten teachers from that
district. Find the 85th percentile for the sum of the sampled
teacher's salaries to 2 decimal places.

Salaries for teachers in a particular elementary school district
are normally distributed with a mean of $41,000 and a standard
deviation of $6,100. We randomly survey ten teachers from that
district.
A. Give the distribution of ΣX. (Round your answers to
two decimal places.)
ΣX - N ( , )
B. Find the probability that the teachers earn a total
of over $400,000. (Round your answer to four decimal places.)
C. Find the 80th percentile for an individual
teacher's salary....

Salaries for teachers in a particular elementary school district
are normally distributed with a mean of $46,000 and a standard
deviation of $4,900. We randomly survey ten teachers from that
district. (Round your answers to the nearest dollar.)
(a) Find the 90th percentile for an individual
teacher's salary.
(b) Find the 90th percentile for the average teacher's
salary.

Salaries for teachers in a particular elementary school district
are normally distributed with a mean of $46,000 and a standard
deviation of $4,500. We randomly survey ten teachers from that
district. (Round your answers to the nearest dollar.)
A) Find the 90th percentile for an individual
teacher's salary.
B)Find the 90th percentile for the average teacher's
salary.

Salaries for teachers in a particular elementary school district
have a mean of $44,000 and a standard deviation of $6,500. We
randomly survey 36 teachers from that district.
Why can we say the sampling distribution of mean salaries for
teachers in this district is approximately normal?
Find the probability that the mean salary is less than
$43,000.
Find the probability that the mean salary is between $45,000
and $47,000.

Salaries for teachers in a particular elementary school district
are normally distributed with a mean of $42,000 and a standard
deviation of $5,700. We randomly survey ten teachers from that
district. (Round your answers to the nearest dollar.)
(a) Find the 90th percentile for an individual
teacher's salary.
$ =
(b) Find the 90th percentile for the average teacher's
salary.
$ =

A researcher claims that the variation in the salaries of
elementary school teachers is greater than the variation in the
salaries of secondary school teachers. A random sample of the
salaries of 30 elementary school teachers has a variance of $8,208,
and a random sample of the salaries of 30 secondary school teachers
has a variance of $3,817. At α = 0.05, can the researcher conclude
that the variation in the elementary school teachers’ salaries is
greater than the variation...

ADVERTISEMENT

ADVERTISEMENT

Latest Questions

- ASSIGNMENT WEEK 1 (Metal Casting) 1. Name the two basic categories of casting processes. (CO1,C2) 2....
- Sun Corporation has had returns of -6 percent, 16 percent, 18 percent, and 28 percent for...
- Hydrogen at 25oC and 0.1 Mpa is fed to the head of a cutting torch. Calculate...
- Chapter 10 Pure Monopoly Assignment 1. What are the major characteristics of pure monopoly? 2. In...
- Calculate the value of deltaG for the reaction Si3N4 + 3O2 = 3 SiO2(alpha-quartz) + 2...
- 6. Dependency Theory is one of two major explanations for the unequal distribution of the world’s...
- Coffee Bean Inc. (CBI) processes and distributes a variety of coffee. CBI buys coffee beans from...

ADVERTISEMENT