Question

In: Statistics and Probability

1. In a group where the mean = 72, the Sx= 10.4, and the scores are...

1. In a group where the mean = 72, the Sx= 10.4, and the scores are normally distributed, what percent of the group scores below a score of 80?

Use web calculator:http://davidmlane.com/hyperstat/z_table.html (Links to an external site.)

64%

correct answer not given

78%

34%

2. When group scores are normally distributed with a mean of 75 and the standard deviation of 5, what is the score for the 16th percentile?

70

75

60

80

3. The correlation coefficient that could be used to examine the relationship between a continuous and a dichotomous variable is

the Phi coefficient

Kendall's Tau

Point biserial

the Pearson-product-moment correlation

4. A Pearson-product-moment correlation coefficient

a. tells the direction (e.g., inverse) of the relationship between two linearly related continuous variables

b. is a statistic that ranges only between 0 and 1

c. All of the above are correct answers

d. tells the strength of the relationship between two categorical variables

Solutions

Expert Solution

1)

Answer: 78%

Explanation:

The percent of the group scores below 80 is obtained from the given calculator. The screenshot is shown below,

2)

Answer: 70

Explanation:

To calculate the z score the given percentile, the select value from an are and put Area = 0.16. The screenshot is shown below,

3)

Answer: Point biserial

4)

Answer: a. tells the direction (e.g., inverse) of the relationship between two linearly related continuous variables

Explanation: The Pearson-product-moment correlation coefficient tells the direction and strength of two linearly related continuous variables.

Its values range from -1 to +1


Related Solutions

The test scores for a math exam have a mean of 72 with a standard deviation...
The test scores for a math exam have a mean of 72 with a standard deviation of 8.5. Let the random variable X represent an exam score. a) Find the probability that an exam score is at most 80. (decimal answer, round to 3 decimal places) b) Find the probability that an exam score is at least 60. (decimal answer, round to 3 decimal places) c) Find the probability that an exam score is between 70 and 90. (decimal answer,...
Use the following scores for questions 1-3: 48, 95, 72, 24, 55 Calculate the mean: __________...
Use the following scores for questions 1-3: 48, 95, 72, 24, 55 Calculate the mean: __________ Calculate the median: __________ Calculate the deviation of each score from the mean: ______________________________ Questions 4-8 refer to the following situation: A researcher measured self-reported anxiety symptoms for a sample of 5 participants. He recorded the total number of symptoms reported by each participant. The data on six subjects are as follows:                         3, 5, 0, 2, 7, 4 Calculate the mean:_______________ Calculate the...
1)In a distribution of IQ scores, where the mean is 100 and the standard deviation is...
1)In a distribution of IQ scores, where the mean is 100 and the standard deviation is 15........ -Compute the z score for an IQ of 100 -Compute the z score for an IQ of 107 2)For all US women, assuming a normal distribution - Mean height is 64 inches ; Standard deviation is 2.4 inches -What percentage of US women are 60 inches or shorter? -What percentage of US women have a height between 64 and 67 inches?
Student scores on Professor Combs' Stats final exam are normally distributed with a mean of 72...
Student scores on Professor Combs' Stats final exam are normally distributed with a mean of 72 and a standard deviation of 7.5 Find the probability of the following: **(use 4 decimal places)** a.) The probability that one student chosen at random scores above an 77.   b.) The probability that 20 students chosen at random have a mean score above an 77.   c.) The probability that one student chosen at random scores between a 67 and an 77.   d.) The probability...
Test scores from a college math course follow a normal distribution with mean = 72 and...
Test scores from a college math course follow a normal distribution with mean = 72 and standard deviation = 8 Let x be the test score. Find the probability for a) P(x < 66) b) P(68<x<78) c) P(x>84) d) If 600 students took this test, how many students scored between 62 and 72?
A teacher looks at the scores on a standardized test, where the mean of the test...
A teacher looks at the scores on a standardized test, where the mean of the test was a 73 and the standard deviation was 9. Find the following z-score table Link What is the probability that a student will score between 73 and 90 What is the probability that a student will score between 65 and 85 What is the probability that a student will get a score greater than 70 What is the probability that a student will score...
Find the range, mean, median, mode for the following scores: 82, 60, 78, 81, 65, 72,...
Find the range, mean, median, mode for the following scores: 82, 60, 78, 81, 65, 72, 72, 78 Complete the Table then find the variance and standard deviation. Show the formulas and your substitution for both. Scores Mean Deviation Deviation2 82 73.5 60 78 81 65 72 72 78 Totals
1) - On a final examination in mathematics, the mean was 72 and the variance was...
1) - On a final examination in mathematics, the mean was 72 and the variance was 225. Determine the standard scores (u.e., grades in standard-deviation units) of students receiving the grades (a) 60, (b) 93, and (c) 72. 2) - Find the Mean, Median, and Mode for the sets (a) 3, 5, 2, 6, 5, 9, 5, 2, 8, 6 and (b) 51.6, 48.7, 50.3, 49.5, 48.9
Group Statistics Group N Mean Std. Deviation Std. Error Mean Scores male 50 49.7200 10.40220 1.47109...
Group Statistics Group N Mean Std. Deviation Std. Error Mean Scores male 50 49.7200 10.40220 1.47109 female 50 31.5800 11.59009 1.63909 Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means F Sig. t df Sig. (2-tailed) Mean Difference Std. Error Difference 95% Confidence Interval of the Difference Lower Upper Scores Equal variances assumed .519 .473 8.236 98 .000 18.14000 2.20243 13.76934 22.51066 Equal variances not assumed 8.236 96.876 .000 18.14000 2.20243 13.76871 22.51129 Imagine that...
Compare gain scores (Test 1 & 2) between group 1 and the group 2 protocols with...
Compare gain scores (Test 1 & 2) between group 1 and the group 2 protocols with independent t-tests. Significance for the study will be considered as p≤0.05 (noting that p-values near the cutoff will be discussed relative to clinical relevance). I've highlighted the applicable gain scores below. This will be two separate t-tests, correct? One for Test 1 and one for Test 2. However, do I then compare the two t-tests to each other?? I also have negative gain scores,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT