In: Statistics and Probability
An agricultural scientist planted alfalfa on several plots of land, identical except for the soil pH. Following are the dry matter yields (in pounds per acre) for each plot.
pH |
4.6 |
4.8 |
5.2 |
5.4 |
5.6 |
5.8 |
6 |
Yield |
1056 |
1833 |
1629 |
1852 |
1783 |
2647 |
2111 |
Compute the least-squares line for predicting yield from pH. Round the answers to two decimal places.
y = ____ + ______x
Hello
YOUR REQUIRED ANSWER IS : y = -2049.28 + 728.77x
Using the given data:
pH | Yield |
4.6 | 1056 |
4.8 | 1833 |
5.2 | 1629 |
5.4 | 1852 |
5.6 | 1783 |
5.8 | 2647 |
6 | 2111 |
Using Data Analysis package of Excel:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.77706933 | |||||||
R Square | 0.603836743 | |||||||
Adjusted R Square | 0.524604092 | |||||||
Standard Error | 331.5257045 | |||||||
Observations | 7 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 837625.2505 | 837625.2505 | 7.621059417 | 0.039805079 | |||
Residual | 5 | 549546.4638 | 109909.2928 | |||||
Total | 6 | 1387171.714 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -2049.275362 | 1415.997228 | -1.447231197 | 0.207482851 | -5689.212115 | 1590.66139 | -5689.212115 | 1590.66139 |
pH | 728.7681159 | 263.9864829 | 2.760626635 | 0.039805079 | 50.16925812 | 1407.366974 | 50.16925812 | 1407.366974 |
Thanks!
Please drop an upvote if you find this helpful.