In: Statistics and Probability
Company X is trying to estimate future inspection fees based on prior experience. You (the accountant) requested and gathered from various managers the number of orders received each week, |
||||||||||||
the average weight of each order, and the average cost of each order. You then compared this data to the actual inspection fees incurred. The data is summarized below: |
||||||||||||
Week | Inspection Fees | # orders received | Size of order (lbs) | Cost of order | ||||||||
Week 1 | $57,600 | 219,379 | 889,114 | $25,847 | ||||||||
Week 2 | $36,500 | 126,965 | 320,181 | $12,748 | ||||||||
Week 3 | $40,500 | 197,583 | 700,000 | $43,910 | ||||||||
Week 4 | $47,200 | 231,072 | 539,044 | $9,421 | ||||||||
Week 5 | $54,700 | 255,388 | 677,425 | $20,382 | ||||||||
Week 6 | $56,500 | 142,072 | 396,396 | $16,329 | ||||||||
Week 7 | $39,500 | 151,618 | 468,812 | $11,097 | ||||||||
Week 8 | $30,400 | 90,306 | 267,177 | $10,190 | ||||||||
Week 9 | $20,000 | 72,718 | 187,030 | $6,082 | ||||||||
Week 10 | $50,000 | 123,008 | 466,636 | $16,723 | ||||||||
Week 11 | $30,000 | 126,341 | 135,045 | $2,932 | ||||||||
Week 12 | $20,000 | 41,988 | 204,808 | $4,202 | ||||||||
Week 13 | $42,900 | 155,783 | 576,713 | $9,420 | ||||||||
Week 14 | $55,300 | 266,358 | 603,139 | $19,635 | ||||||||
Week 15 | $28,000 | 46,367 | 211,147 | $9,319 | ||||||||
Total | $609,100 | 2,246,946 | 6,642,667 | $218,237 | ||||||||
Per Week | 40607 | 149796 | 442844 | $14,549 |
Regression |
|||||||||||||||||||||||||||||||||||||
You take your estimate for Week 16 to the boss and he/she seemed skeptical of the results. The boss sends you back to do some more work. You decide to use regression. | |||||||||||||||||||||||||||||||||||||
Run regression analysis for the two most promising variables. Compare the coefficient of determination for each. | |||||||||||||||||||||||||||||||||||||
Which one has the highest coefficient of determination? Construct a cost equation. | |||||||||||||||||||||||||||||||||||||
Independent variable with the highest coefficient of determination is: |
|||||||||||||||||||||||||||||||||||||
New Cost equation is:
|
Hello,
1) Fit the regression equation on the # order recived and size of order,
Regression Statistics | ||||||||
Multiple R | 0.84771874 | |||||||
R Square | 0.718627062 | |||||||
Adjusted R Square | 0.671731572 | |||||||
Standard Error | 7400.670927 | |||||||
Observations | 15 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 17210.17982 | 4642.097689 | 3.707414 | 0.002995 | 7095.918 | 27324.44 | 7095.918 | 27324.44 |
# orders received | 0.087803737 | 0.049044137 | 1.7903 | 0.098648 | -0.01905 | 0.194662 | -0.01905 | 0.194662 |
Size of order (lbs) | 0.02313183 | 0.015825279 | 1.461701 | 0.169511 | -0.01135 | 0.057612 | -0.01135 | 0.057612 |
2) Fit the regression equation on the # order recived and Cost of order
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.82227 | |||||||
R Square | 0.676129 | |||||||
Adjusted R Square | 0.62215 | |||||||
Standard Error | 7939.92 | |||||||
Observations | 15 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 18227.57 | 4921.79 | 3.703445 | 0.003017 | 7503.916 | 28951.23 | 7503.916 | 28951.23 |
# orders received | 0.136624 | 0.035557 | 3.842413 | 0.002342 | 0.059152 | 0.214096 | 0.059152 | 0.214096 |
Cost of order | 0.131505 | 0.247827 | 0.530634 | 0.605354 | -0.40846 | 0.671473 | -0.40846 | 0.671473 |
3) Fit the regression equation on the # order recived and Cost of order
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.809003 | |||||||
R Square | 0.654486 | |||||||
Adjusted R Square | 0.596901 | |||||||
Standard Error | 8200.92 | |||||||
Observations | 15 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 19843.18 | 4854.57 | 4.087525 | 0.001506 | 9265.977 | 30420.38 | 9265.977 | 30420.38 |
Size of order (lbs) | 0.05336 | 0.01475 | 3.617689 | 0.003529 | 0.021223 | 0.085497 | 0.021223 | 0.085497 |
Cost of order | -0.19705 | 0.318601 | -0.61847 | 0.547826 | -0.89122 | 0.497128 | -0.89122 | 0.497128 |
from amumg the above 3 regression output the 1) # order recived and size of order has higest coefficiant of determination.
so most promising regression equation ,
Inspection Fees = 17210.18 + 0.088 # order recived + 0.023 * size of order ............ regression equation
Q) Which one has the highest coefficient of determination? Construct a cost equation.
regression results for the
1) # orders received
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.817636412 | |||||||
R Square | 0.668529302 | |||||||
Adjusted R Square | 0.643031556 | |||||||
Standard Error | 7717.407793 | |||||||
Observations | 15 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 18569.93198 | 4742.578 | 3.915578 | 0.001773 | 8324.215 | 28815.65 | 8324.215 | 28815.65 |
# orders received | 0.147111244 | 0.02873 | 5.120464 | 0.000197 | 0.085044 | 0.209179 | 0.085044 | 0.209179 |
2) Size of order
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.802167642 | |||||||
R Square | 0.643472925 | |||||||
Adjusted R Square | 0.616047765 | |||||||
Standard Error | 8003.779875 | |||||||
Observations | 15 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 19982.98048 | 4732.733 | 4.222292 | 0.000997 | 9758.532 | 30207.43 | 9758.532 | 30207.43 |
Size of order (lbs) | 0.046570947 | 0.009614 | 4.843849 | 0.000321 | 0.0258 | 0.067342 | 0.0258 | 0.067342 |
3) cost of order
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.52693 | |||||||
R Square | 0.277655 | |||||||
Adjusted R Square | 0.22209 | |||||||
Standard Error | 11392.55 | |||||||
Observations | 15 | |||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 30992.75 | 5210.515 | 5.948116 | 4.84E-05 | 19736.11 | 42249.38 | 19736.11 | 42249.38 |
Cost of order | 0.66079 | 0.295604 | 2.235386 | 0.043566 | 0.022175 | 1.299405 | 0.022175 | 1.299405 |
we fit the three variable sapratly and calculated coefficiant of determination.
# orders received has higest R-square value |
Independent variable with the highest coefficient of determination is: # orders received