Question

In: Statistics and Probability

1. The health insurance requires a minimum of 65 pts on the exam to pass. The exam standard deviation of 8.4 points and normal distribution has a mean of 72.1 pts.


1. The health insurance requires a minimum of 65 pts on the exam to pass. The exam standard deviation of 8.4 points and normal distribution has a mean of 72.1 pts.

a. Calculate the percentage of health insurance takers that pass the exam with 65 pts and above.

b. Calculate what pts cut off is the top 8% who passed the exam

Solutions

Expert Solution

mean = 72.1 , sigma = 8.4

Using central limit theorem,

z = (x -mean)/sigma

P(x> 65)
= P(z> (65 - 72.1)/8.4)
= P(z> -0.85)
= 1- P(z< -0.85)
= 1 - 0.1990
= 0.8010

b)

the z value at top 8% = 1.41

z = (x -mean)/sigma

1.41 = (x - 72.1)/8.4

x = 1.41 * 8.4 + 72.1
x = 83.94



Related Solutions

Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of...
Scores on the SAT exam approximate a normal distribution with mean 500 and standard deviation of 80. USe the distribution to determine the following. (Z score must be rounded to two decimal places: (a) The Z- score for a SAT of 380 (2pts) (b) The percent of SAT scores that fall above 610 (3pts) (c) The prpbability that sn SAT score falls below 720 (3pts) (d) The percentage of SAT scores that fall between 470 and 620 (4pts)
Consider the standard normal distribution with mean  = 0, and standard deviation  = 1...
Consider the standard normal distribution with mean  = 0, and standard deviation  = 1 a. What is the probability that an outcome z is greater than 2.20? b. What is the probability that z is less than 1.1? c. What is the probability that z is between -1.03 and 0.84? d. What value of z cuts off the upper 23% of the standard normal distribution? e. What value of z cuts off the lower 18% of the standard...
A population has a normal distribution with a mean of 51.4 and a standard deviation of...
A population has a normal distribution with a mean of 51.4 and a standard deviation of 8.4. Assuming n/N is less than or equal to 0.05, the probability, rounded to four decimal places, that the sample mean of a sample size of 18 elements selected from this population will be more than 51.15 is?
A population has a normal distribution with a mean of 51.5 and a standard deviation of...
A population has a normal distribution with a mean of 51.5 and a standard deviation of 9.6. Assuming , the probability, rounded to four decimal places, that the sample mean of a sample of size 23 elements selected from this populations will be more than 51.15 is:
If an IQ distribution is normal and has a mean of 100 and a standard deviation...
If an IQ distribution is normal and has a mean of 100 and a standard deviation of 15, then 99% of all those taking the test scored between IQ's of A. 0 and 150 B. 55 and 145 C. 92.5 and 107.5
assume a normal distribution with a mean of 65 and standard deviation of 14 find P(56<X...
assume a normal distribution with a mean of 65 and standard deviation of 14 find P(56<X less than or equal to 68)
1. In a normal distribution with a mean of 70 and a standard deviation of 5,...
1. In a normal distribution with a mean of 70 and a standard deviation of 5, which z score is closest to the mean? z= -0.02, 0.95, 2.50, -1.00, 0.07 2. heights of 10 year olds, regardless of gender, closely follow a normal distribution with a mean of mu= 55in and standard deviation of 6 in. What is the z score of a girl who is 61 in tall? 3. Petra took two exams last week, one in french and...
1.) A distribution of values is normal with a mean of 200 and a standard deviation...
1.) A distribution of values is normal with a mean of 200 and a standard deviation of 27. From this distribution, you are drawing samples of size 30. Find the interval containing the middle-most 54% of sample means: Enter your answer using interval notation. In this context, either inclusive [] or exclusive () intervals are acceptable. Your numbers should be accurate to 1 decimal places. 2.) A fitness company is building a 20-story high-rise. Architects building the high-rise know that...
normal population has a mean of 65 and a standard deviation of 13. You select a...
normal population has a mean of 65 and a standard deviation of 13. You select a random sample of 16. Compute the probability that the sample mean is: (Round your z values to 2 decimal places and final answers to 4 decimal places): Greater than 67. Less than 64. Between 64 and 67.
Suppose Z has a standard normal distribution with a mean of 0 and standard deviation of...
Suppose Z has a standard normal distribution with a mean of 0 and standard deviation of 1. The probability that Z is less than 1.15 is
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT