In: Statistics and Probability
Subject 3
George who is the General Director of the Research Institute for Tourism in Greece, believes that the percentage composition of 5 Stars hotels is not the same in Crete and elsewhere (Southern Aegean Islands and Ionian Islands). In order to test this statement, create two additional binary variables as follows:
5STARS: Yes (Code 1) when STARS = 5; No (Code 0) when STARS ≠ 5.
CRETE: Yes (Code 1) when Region_ID = 1; No (Code 0) when Region_ID ≠ 1.
3.1 State the null and the alternative hypotheses.
3.2 Test the null hypothesis at α = 5%.
3.3 What is your conclusion?
3.4 Let π1 denote the population proportion of 5 stars hotels in Crete and π2 the population proportion of 5 stars hotels elsewhere. Set up a symmetric 95% confidence interval estimate of the difference (π1 - π2). What is your main conclusion?
STARS | Total_Rooms | Region_ID | ARR_MAY | ARR_AUG | L_COST |
5 | 412 | 1 | 95 | 160 | 2.165.000 |
5 | 313 | 1 | 94 | 173 | 2.214.985 |
5 | 265 | 1 | 81 | 174 | 1.393.550 |
5 | 204 | 1 | 131 | 225 | 2.460.634 |
5 | 172 | 1 | 90 | 195 | 1.151.600 |
5 | 133 | 1 | 71 | 136 | 801.469 |
5 | 127 | 1 | 85 | 114 | 1.072.000 |
4 | 322 | 1 | 70 | 159 | 1.608.013 |
4 | 241 | 1 | 64 | 109 | 793.009 |
4 | 172 | 1 | 68 | 148 | 1.383.854 |
4 | 121 | 1 | 64 | 132 | 494.566 |
4 | 70 | 1 | 59 | 128 | 437.684 |
4 | 65 | 1 | 25 | 63 | 83.000 |
3 | 93 | 1 | 76 | 130 | 626.000 |
3 | 75 | 1 | 40 | 60 | 37.735 |
3 | 69 | 1 | 60 | 70 | 256.658 |
3 | 66 | 1 | 51 | 65 | 230.000 |
3 | 54 | 1 | 65 | 90 | 200.000 |
2 | 68 | 1 | 45 | 55 | 199.000 |
1 | 57 | 1 | 35 | 90 | 11.720 |
4 | 38 | 1 | 22 | 51 | 59.200 |
4 | 27 | 1 | 70 | 100 | 130.000 |
3 | 47 | 1 | 60 | 120 | 255.020 |
3 | 32 | 1 | 40 | 60 | 3.500 |
3 | 27 | 1 | 48 | 55 | 20.906 |
2 | 48 | 1 | 52 | 60 | 284.569 |
2 | 39 | 1 | 53 | 104 | 107.447 |
2 | 35 | 1 | 80 | 110 | 64.702 |
2 | 23 | 1 | 40 | 50 | 6.500 |
1 | 25 | 1 | 59 | 128 | 156.316 |
4 | 10 | 1 | 90 | 105 | 15.950 |
3 | 18 | 1 | 94 | 104 | 722.069 |
2 | 17 | 1 | 29 | 53 | 6.121 |
2 | 29 | 1 | 26 | 44 | 30.000 |
1 | 21 | 1 | 42 | 54 | 5.700 |
1 | 23 | 1 | 30 | 35 | 50.237 |
2 | 15 | 1 | 47 | 50 | 19.670 |
1 | 8 | 1 | 31 | 49 | 7.888 |
1 | 20 | 1 | 35 | 45 | |
1 | 11 | 1 | 40 | 55 | |
1 | 15 | 1 | 40 | 55 | 3.500 |
1 | 18 | 1 | 35 | 40 | 112.181 |
3 | 23 | 1 | 40 | 55 | |
4 | 10 | 1 | 57 | 97 | 30.000 |
2 | 26 | 1 | 35 | 40 | 3.575 |
5 | 306 | 2 | 113 | 235 | 2.074.000 |
5 | 240 | 2 | 61 | 132 | 1.312.601 |
5 | 330 | 2 | 112 | 240 | 434.237 |
5 | 139 | 2 | 100 | 130 | 495.000 |
4 | 353 | 2 | 87 | 152 | 1.511.457 |
4 | 324 | 2 | 112 | 211 | 1.800.000 |
4 | 276 | 2 | 95 | 160 | 2.050.000 |
4 | 221 | 2 | 47 | 102 | 623.117 |
4 | 200 | 2 | 77 | 178 | 796.026 |
4 | 117 | 2 | 48 | 91 | 360.000 |
3 | 170 | 2 | 60 | 104 | 538.848 |
3 | 122 | 2 | 25 | 33 | 568.536 |
5 | 57 | 2 | 68 | 140 | 300.000 |
4 | 62 | 2 | 55 | 75 | 249.205 |
3 | 98 | 2 | 38 | 75 | 150.000 |
3 | 75 | 2 | 45 | 70 | 220.000 |
3 | 62 | 2 | 45 | 90 | 50.302 |
5 | 50 | 2 | 100 | 180 | 517.729 |
4 | 27 | 2 | 180 | 250 | 51.000 |
3 | 44 | 2 | 38 | 84 | 75.704 |
3 | 33 | 2 | 99 | 218 | 271.724 |
3 | 25 | 2 | 45 | 95 | 118.049 |
2 | 42 | 2 | 28 | 40 | |
2 | 30 | 2 | 30 | 55 | 40.000 |
1 | 44 | 2 | 16 | 35 | |
3 | 10 | 2 | 40 | 70 | 10.000 |
2 | 18 | 2 | 60 | 100 | 10.000 |
1 | 18 | 2 | 16 | 20 | |
2 | 73 | 2 | 22 | 41 | 70.000 |
2 | 21 | 2 | 55 | 100 | 12.000 |
1 | 22 | 2 | 40 | 100 | 20.000 |
1 | 25 | 2 | 80 | 120 | 36.277 |
1 | 25 | 2 | 80 | 120 | 36.277 |
1 | 31 | 2 | 18 | 35 | 10.450 |
3 | 16 | 2 | 80 | 100 | 14.300 |
2 | 15 | 2 | 30 | 45 | 4.296 |
1 | 12 | 2 | 40 | 65 | |
1 | 11 | 2 | 30 | 50 | |
1 | 16 | 2 | 25 | 70 | 379.498 |
1 | 22 | 2 | 30 | 35 | 1.520 |
4 | 12 | 2 | 215 | 265 | 45.000 |
4 | 34 | 2 | 133 | 218 | 96.619 |
2 | 37 | 2 | 35 | 95 | 270.000 |
2 | 25 | 2 | 100 | 150 | 60.000 |
2 | 10 | 2 | 70 | 100 | 12.500 |
5 | 270 | 3 | 60 | 90 | 1.934.820 |
5 | 261 | 3 | 119 | 211 | 3.000.000 |
5 | 219 | 3 | 93 | 162 | 1.675.995 |
5 | 280 | 3 | 81 | 138 | 903.000 |
5 | 378 | 3 | 44 | 128 | 2.429.367 |
5 | 181 | 3 | 100 | 187 | 1.143.850 |
5 | 166 | 3 | 98 | 183 | 900.000 |
5 | 119 | 3 | 100 | 150 | 600.000 |
5 | 174 | 3 | 102 | 211 | 2.500.000 |
5 | 124 | 3 | 103 | 160 | 1.103.939 |
4 | 112 | 3 | 40 | 56 | 363.825 |
4 | 227 | 3 | 69 | 123 | 1.538.000 |
4 | 161 | 3 | 112 | 213 | 1.370.968 |
4 | 216 | 3 | 80 | 124 | 1.339.903 |
3 | 102 | 3 | 53 | 91 | 173.481 |
4 | 96 | 3 | 73 | 134 | 210.000 |
4 | 97 | 3 | 94 | 120 | 441.737 |
4 | 56 | 3 | 70 | 100 | 96.000 |
3 | 72 | 3 | 40 | 75 | 177.833 |
3 | 62 | 3 | 50 | 90 | 252.390 |
3 | 78 | 3 | 70 | 120 | 377.182 |
3 | 74 | 3 | 80 | 95 | 111.000 |
3 | 33 | 3 | 85 | 120 | 238.000 |
3 | 30 | 3 | 50 | 80 | 45.000 |
3 | 39 | 3 | 30 | 68 | 50.000 |
3 | 32 | 3 | 30 | 100 | 40.000 |
2 | 25 | 3 | 32 | 55 | 61.766 |
2 | 41 | 3 | 50 | 90 | 166.903 |
2 | 24 | 3 | 70 | 120 | 116.056 |
2 | 49 | 3 | 30 | 73 | 41.000 |
2 | 43 | 3 | 94 | 120 | 195.821 |
4 | 9 | 3 | 100 | 180 | |
2 | 20 | 3 | 70 | 120 | 96.713 |
2 | 32 | 3 | 19 | 45 | 6.500 |
2 | 14 | 3 | 35 | 70 | 5.500 |
2 | 14 | 3 | 50 | 80 | 4.000 |
1 | 13 | 3 | 25 | 45 | 15.000 |
1 | 13 | 3 | 30 | 50 | 9.500 |
2 | 53 | 3 | 55 | 80 | 48.200 |
3 | 11 | 3 | 95 | 120 | 3.000 |
1 | 16 | 3 | 25 | 31 | 27.084 |
1 | 21 | 3 | 16 | 40 | 30.000 |
1 | 21 | 3 | 16 | 40 | 20.000 |
1 | 46 | 3 | 19 | 23 | 43.549 |
1 | 21 | 3 | 30 | 40 | 10.000 |
3.1 State the null and the alternative hypotheses.
Let π1 be the percentage composition of 5 Stars hotels in Crete
Let π2 be the percentage composition of 5 Stars hotels in Southern Aegean Islands and the Ionian Islands
The hypothesis being tested is:
H0: π1 = π2
H1: π1 ≠ π2
3.2 Test the null hypothesis at α = 5%.
The output is:
p1 | p2 | pc | |
0.3043 | 0.6957 | 0.5 | p (as decimal) |
7/23 | 16/23 | 23/46 | p (as fraction) |
7. | 16. | 23. | X |
23 | 23 | 46 | n |
-0.391 | difference | ||
0. | hypothesized difference | ||
0.1474 | std. error | ||
-2.65 | z | ||
.0080 | p-value (two-tailed) | ||
-0.657 | confidence interval 95.% lower | ||
-0.125 | confidence interval 95.% upper | ||
0.2659 | margin of error |
Since the p-value (0.0080) is less than the significance level (0.05), we can reject the null hypothesis.
3.3 What is your conclusion?
Therefore, we can conclude that the percentage composition of 5 Stars hotels is not the same in Crete and elsewhere (Southern Aegean Islands and the Ionian Islands).
3.4 Let π1 denote the population proportion of 5 stars hotels in Crete and π2 the population proportion of 5 stars hotels elsewhere. Set up a symmetric 95% confidence interval estimate of the difference (π1 - π2). What is your main conclusion?
The symmetric 95% confidence interval estimate of the difference (π1 - π2) is between -0.657 and -0.125.
Since the confidence interval does not contain 0, we can conclude that the percentage composition of 5 Stars hotels is not the same in Crete and elsewhere (Southern Aegean Islands and the Ionian Islands).