Question

In: Statistics and Probability

A study was done on protected and non protected tests. The results are shown in the...

A study was done on protected and non protected tests. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.01

significance level for both parts.

Protected

Non-protected

μ

μ 1

μ 2

n

30

34

77.53

81.35

s

10.06

18.26

b. Construct a confidence interval suitable for testing the claim that students taking non-protected tests get a higher mean score than those taking protected tests.

Solutions

Expert Solution


Related Solutions

A study was done on proctored and nonproctored tests. The results are shown in the table....
A study was done on proctored and nonproctored tests. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.05 significance level for both parts. The test​ statistic, t, is
A study was done on body temperatures of men and women. The results are shown in...
A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Use a 0.05 significance level for both parts. (Women on right, won't let me label header.) Men μ μ1 μ2 n 11 59 x overbar 97.63°F 97.37°F s 0.95°F 0.74°F Test the claim that men have...
A study was done on body temperature of men and women. The results are shown in...
A study was done on body temperature of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal . Use a 0.05 significance level for both parts. Men: mean 1, n=11, x bar= 97.55 degree F, s= 0.87 degree F. Women: mean 2, n=59, x bar 97.44 degree F, s= 0.72 degree F (a)....
A study was done on body temperature of men and women. The results are shown in...
A study was done on body temperature of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal . Use a 0.05 significance level for both parts. Men: mean 1, n=11, x bar= 97.55 degree F, s= 0.87 degree F. Women: mean 2, n=59, x bar 97.44 degree F, s= 0.72 degree F (a)....
A study was done on body temperatures of men and women. The results are shown in...
A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.01 significance level for both parts. What are the null and alternative​ hypotheses? The test​ statistic, t, is ​(Round to two decimal places as​ needed.) The​ P-value is...
A study was done on body temperatures of men and women. The results are shown in...
A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.01 significance level for both parts. Men Women muμ μ1 μ2 n 11 59 x overbarx 97.59 °F 97.36 °F s 0.96 °F 0.72 °F a. Test the...
A study was done on body temperatures of men and women. The results are shown in...
A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Find the t statistic, p-value, and conclusion on if we reject or fail to reject the null hypothesis. Men Women Mean Mean 1 Mean 2 N 11 59 x   97.52°F 97.46°F s   0.82°F 0.64°F a. Use...
A study was done on body temperatures of men and women. The results are shown in...
A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.01 significance level for both parts. Men                 Women μ          μ1                    μ2 n          11                    59 x          97.78°F           97.25°F s           0.97°F             0.66°F a. Test the claim that men have...
A study was done on body temperatures of men and women. The results are shown in...
A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed populations, and do not assume that the population standard deviations are equal. Complete parts (a) and (b) below. Use a 0.010.01 significance level for both parts. Men Women muμ mu 1μ1 mu 2μ2 n 1111 5959 x overbarx 97.6997.69degrees°F 97.2597.25degrees°F s 0.920.92degrees°F 0.710.71degrees°F FIND P VALUE T VALUE...
8. A study was done on body temperatures of men and women. The results are shown...
8. A study was done on body temperatures of men and women. The results are shown in the table. Assume that the two samples are independent simple random samples selected from normally distributed​ populations, and do not assume that the population standard deviations are equal. Complete parts​ (a) and​ (b) below. Use a 0.05 significance level for both parts. Men Women μ μ1 μ2 n 11 59 x 97.64 F 97.32 F s 0.94 F 0.72 F a. what are...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT