Question

In: Advanced Math

Evaluate the following integrals using trigonometric identities (a) intergal sin6 x cos3 x dx (b) Z...

Evaluate the following integrals using trigonometric identities
(a) intergal sin6 x cos3 x dx
(b) Z π/2
o
cos5 x dx
(c) Z
sin3
(

x)

x
dx
(d) Z
tsin2
t dt
(e) Z
tan2
θ sec4
θ dθ
(f) Z
x sec x tan x dx

Solutions

Expert Solution


Related Solutions

(15) Evaluate each of the following integrals. (a) Z cos(x) ln(sin(x)) dx (b) Z x arcsin(x...
(15) Evaluate each of the following integrals. (a) Z cos(x) ln(sin(x)) dx (b) Z x arcsin(x 2 ) dx (c) Z 1 0 ln(1 + x 2 ) dx (d) Z 1/4 0 arcsin(2x) dx (16) Use the table of integrals to evaluate the integrals, if needed. You may need to transform the integrand first. (a) Z cos(4t) cos(5t)dt (b) Z 1 cos3 (x) dx (c) Z 1 x 2 + 6x + 9 dx (d) Z 1 50 −...
Solve the following integrals using integration by parts technique: a) [int] xsinx dx b) [int] x^2sinx...
Solve the following integrals using integration by parts technique: a) [int] xsinx dx b) [int] x^2sinx dx c) [int] xcosx dx d) [int] sin(sqrt(x)) dx e) [int] xexp(x) dx f) [int] x / exp(x) dx
1) Find the following indefinite integrals.     a) (4-3xsec^2 x)/x dx     b) (5 sin^ 3...
1) Find the following indefinite integrals.     a) (4-3xsec^2 x)/x dx     b) (5 sin^ 3 x ) / (1+cosx)(1-cosx) dx 2) A particle starts from rest and moves along the x-axis from the origin at t = 0 with acceleration        a(t) =   6 - 2t (ms^-2) at time t. When and where will it come to rest.        Remember dvdt = acceleration and dsdt = velocity 3) Use substitution to find the following integrals.     a) (9x)/ sqrt...
Evaluate the following integral using trigonometric substitution. a) find the partial decomposition of the integrand b)...
Evaluate the following integral using trigonometric substitution. a) find the partial decomposition of the integrand b) evaluate the indefinite integral 1. 6/x(x^2+2)^2 2. 5/x(x^2+1)^2?
For each of the following integrals find an appropriate trigonometric substitution of the form x=f(t)x=f(t) to...
For each of the following integrals find an appropriate trigonometric substitution of the form x=f(t)x=f(t) to simplify the integral. the inteagral a) ∫x(3x^2+30x+73)^(1/2)dx b)∫x/(−25−3x^2+18x)^(1/2)dx
Calculate the integrals given below using partial fractions: a) [int] 1/(x^2 - a^2) dx a is...
Calculate the integrals given below using partial fractions: a) [int] 1/(x^2 - a^2) dx a is a fixed positive real number b) [int] 1/(x^4 - 1) dx c) [int] 1/(x^2 + x) dx d) [int] 1/(x^2 - 4x - 5) dx e) [int] 1/(x^2 - 3x - 5) dx f) [int] exp(x) / (exp(4x) - 5exp(2x) + 4) dx
Calculate the integrals given below using partial fractions: a) [int] 1/(x^2 - a^2) dx a is...
Calculate the integrals given below using partial fractions: a) [int] 1/(x^2 - a^2) dx a is a fixed positive real number b) [int] 1/(x^4 - 1) dx c) [int] 1/(x^2 + x) dx d) [int] 1/(x^2 - 4x - 5) dx e) [int] 1/(x^2 - 3x - 5) dx f) [int] exp(x) / (exp(4x) - 5exp(2x) + 4) dx
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z)...
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z) b. X×(Y×Z) = (X.Z)Y – (X.Y)Z c. X.(Y×Z) = -Y.(X×Z)
Find the integrals of the following: 1) 6sin2xcos3x dx 2) 9xcos2x dx 3) 3cos2xtan3x dx 4)...
Find the integrals of the following: 1) 6sin2xcos3x dx 2) 9xcos2x dx 3) 3cos2xtan3x dx 4) 7cot5xsin4x dx 5) 3tan2xsecx dx
Complex Variable Evaluate the following integrals: a) int_c (z^2/((z-3i)^2)) dz; c=lzl=5 b) int_c (1/((z^3)(z-4))) dz ;...
Complex Variable Evaluate the following integrals: a) int_c (z^2/((z-3i)^2)) dz; c=lzl=5 b) int_c (1/((z^3)(z-4))) dz ; c= lzl =1 c) int_c (2(z^2)-z+1)/(((z-1)^2)(z+1)) dz ; c= lzl=3 (Details Please)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT