Evaluate the following integrals using trigonometric
identities
(a) intergal sin6 x cos3 x dx
(b) Z π/2
o
cos5 x dx
(c) Z
sin3
(
√
x)
√
x
dx
(d) Z
tsin2
t dt
(e) Z
tan2
θ sec4
θ dθ
(f) Z
x sec x tan x dx
Evaluate the following integral using trigonometric
substitution. a) find the partial decomposition of the integrand b)
evaluate the indefinite integral
1. 6/x(x^2+2)^2
2. 5/x(x^2+1)^2?
1. Find the Laplace transform of each of the following
functions: (a). f(t) = t , (b). f(t) = t2 ,
(c) f(t) = tn where n is a positive
integer
Laplace transform of the given function
2. . f(t) = sin bt
3. f(t) = eat sin bt
Find the function of the form
f(t) = c0 + c1sin(t) + c2cos(t)
+ c3sin(2t) + c4cos(2t)
that best fits the data points (0,0), (0.5,0.5), (1,1),
(1.5,1.5), (2,2), (2.5,2.5), (3,3), using least squares. Sketch the
solution, together with the function g(t) = t.
Find the function of the form
f(t) = c0 + c1sin(t) + c2cos(t)
+ c3sin(2t) + c4cos(2t)
that best fits the data points (0,0), (0.5,0.5), (1,1),
(1.5,1.5), (2,2), (2.5,2.5), (3,3), using least squares. Sketch the
solution, together with the function g(t) = t.
Find the derivative of the function
f(t)=arccsc〖(-t^2)〗
f(x)=arccot√x
y=ln〖t^2 〗-arctan〖t/2〗
f(x)=arcsecx+arccscx
y=arctan〖x/2〗+1/(2(x^2+4))
Use implicit differentiation to find an equation of
the tangent line the graph of the equation at the given
point.
arctan(x+y)=y^2+π/4, (1,0)