In: Statistics and Probability
Solution :
Given that,
(a)
Sample size = n = 32
Z/2 = 1.645
Margin of error = E = Z/2* ( /n)
= 1.645 * (42.3 / 32)
Margin of error = E = 12.3
At 90% confidence interval estimate of the population mean is,
- E < < + E
138.5 - 12.3 < < 138.5 + 12.3
126.2 < < 150.8
Lower limit:126.2
Upper limit:150.8
(b)
Sample size = n = 32
Z/2 = 1.96
Margin of error = E = Z/2* ( /n)
= 1.96 * (42.3 / 32)
Margin of error = E = 14.7
At 95% confidence interval estimate of the population mean is,
- E < < + E
138.5 - 14.7 < < 138.5 + 14.7
123.8 < < 153.2
Lower limit:123.8
Upper limit:153.2
(c)
Sample size = n = 32
Z/2 = 2.576
Margin of error = E = Z/2* ( /n)
= 2.576 * (42.3 / 32)
Margin of error = E = 19.3
At 99% confidence interval estimate of the population mean is,
- E < < + E
138.5 - 19.3 < < 138.5 + 19.3
119.2 < <
Lower limit:119.2
Upper limit:157.8