Question

In: Physics

A block of mass m=2kg can slide down a frictionless 53 degree incline but is connected...

A block of mass m=2kg can slide down a frictionless 53 degree incline but is connected to a pully of mass M=4kg and radius R=0.5m. The pulley may be treated as a uniform disk. Find:

a) The angular acceleration of the pulley

b) The speed of the block after it has slid 1m starting from rest

Solutions

Expert Solution


Related Solutions

A block slides down a 53 degree incline with an initial velocity of 13 m/s starting...
A block slides down a 53 degree incline with an initial velocity of 13 m/s starting from rest from a height of 12 m above and hits the ground in 1 second. (5 points) Determine the acceleration of the system. (15 points) Determine the coefficient of kinetic friction between the block and the incline.
In the figure, a small block of mass m = 0.121 kg slides down a frictionless...
In the figure, a small block of mass m = 0.121 kg slides down a frictionless surface from an initial height of h = 0.850 m and then sticks to a uniform vertical rod of mass M = 0.879 kg and length L = 1.83 m. The rod pivots about point O through an angle θ before momentarily stopping. Find θ (in degrees).
A block with mass M1 rests on a frictionless table. It is connected by a massless...
A block with mass M1 rests on a frictionless table. It is connected by a massless string to a block with mass M2, which hangs below the edge of the table. The system is released from rest at time t = 0. Find the distance block M1 moves in time t. You may assume that the string passes over a massless, frictionless pulley at the edge of the table to assist your calculations.
A block of mass 23 kg is set on top of a 37 degree incline with...
A block of mass 23 kg is set on top of a 37 degree incline with a hight of 13.5 m. The incline rests on a table that is 27.8 m above the ground on the planet Mercury (M = 3.285 * 10^23 kg, R = 1516 mi). The coefficient of kinetic friction between the block and the incline is 0.18. The gravitational acceleration on Mercury is 3.68 m/s. How far from the base of the table does the block...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
A block has mass M=2kg and is initially at rest, then slides a distance L =...
A block has mass M=2kg and is initially at rest, then slides a distance L = 1.25m down a theta = 30degrees frictionless incline plane until it is momentarily brought to rest by a spring. The spring is compressed a distance X= 3cm . a) Write down expressions for the initial and final energy of the system b) Find an expression for the spring constant K in terms of L, X, theta and M and calculate K c)The experiment is...
A 30.0 kg block is released at the top of a 20° frictionless incline. The block...
A 30.0 kg block is released at the top of a 20° frictionless incline. The block slides down the incline and compresses a spring (k=800 N/m) by 0.75 meters. What is the total distance the block traveled? It should be 1.5m
A frictionless oscillator is composed of a 350 N/m spring and a block of mass m....
A frictionless oscillator is composed of a 350 N/m spring and a block of mass m. It is set into motion such that at time t = 0, the block is at equilibrium (x 0 = 0) and is moving in the positive x-direction at 16 cm/s. It oscillates at angular frequency ω = 4.4 s − 1. a) Determine the mass of the block. b) Determine the energy of the oscillation. c)Determine the amplitude of the oscillation. d) Determine...
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R....
A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track (between the ramp and the loop) with length 2R that has a kinetic friction coefficient of 0.5. From what height h must the mass be released to stay on the track? No figure. 1.5R 2.5R 3.5R 4.5R or 5.5R
A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT