Question

In: Physics

A sinusoidal electromagnetic wave propagates in a vacuum in the positive x-direction. The B⃗  field oscillates in...

A sinusoidal electromagnetic wave propagates in a vacuum in the positive x-direction. The B⃗  field oscillates in the z-direction. The wavelength of the wave is 30 nm and the amplitude of the B⃗  field oscillations is 1.0×10−2 T.

Part A

Find the frequency with which the electric energy in the wave oscillates.

Express your answer with the appropriate units.

f

f

=

SubmitPrevious AnswersRequest Answer

Incorrect; Try Again; 4 attempts remaining

Part B

Find the frequency at which magnetic field energy oscillates.

Express your answer with the appropriate units.

f

f

=

nothingnothing

SubmitRequest Answer

Part C

Find the maximum energy density.

Express your answer with the appropriate units.

umax

umax

=

nothingnothing

SubmitRequest Answer

Part D

Find the minimal energy density.

Express your answer with the appropriate units.

umin

umin

=

nothingnothing

SubmitRequest Answer

Part E

Find the average energy density.

Express your answer with the appropriate units.

=

nothingnothing

SubmitRequest Answer

Part F

Find the intensity of the wave.

Express your answer with the appropriate units.

I

I

=

nothing

Solutions

Expert Solution



Related Solutions

The electric field of an electromagnetic wave that propagates in a vacuum is given by: ?⃗...
The electric field of an electromagnetic wave that propagates in a vacuum is given by: ?⃗ (?, ?) = 2 cos (α? - ω?) ? + 2 sin (α? - ω?) ?, ?? (?/?); ???? α ? ω ??? ?????????? a) What is the amplitude E0 of the electric field, its angular frequency, period, frequency f, wave number | ?⃗ |, wavelength, its speed u and its phase constant φ? b) I) Determine the electric field in the x-y plane...
A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. Part A If at...
A sinusoidal electromagnetic wave is propagating in a vacuum in the +z-direction. Part A If at a particular instant and at a certain point in space the electric field is in the +x-direction and has a magnitude of 3.40V/m , what is the magnitude of the magnetic field of the wave at this same point in space and instant in time? Part B What is the direction of the magnetic field?
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (3.1 V/m) cos[(? × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex =Ey =0 and Ez =(2V/m)cos(3.14∗10^−15s^−1(t− x/c)). (a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field component there?
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by...
The magnetic field of a uniform plane wave that propagates in a vacuum, is given by the expression: B (r, t) = (10^−6 )[xˆ + 2yˆ + Bzzˆ] cos [ωt + 3x - y - z] in m.k.s.units and where xˆ, yˆ, zˆ are unit vectors along the cartesians axes . Find: (a) The propagation direction. (b) The wavelength λ. (c) The angular frequency ω. (d) The associated electrical field
A plane electromagnetic wave of wavelength 2.00 m travels in vacuum in the negative x-direction with...
A plane electromagnetic wave of wavelength 2.00 m travels in vacuum in the negative x-direction with its magnetic field vector B, of amplitude 1.20 μT, directed along the positive y-axis.             (i)   What is the frequency, f, of the wave? [2]             (ii) What are the direction and the amplitude, Eo, of the electric field vector E associated with the wave ? [4]             (iii) If  B =  Bocos ( kx +  ωt ) in SI units , what are the values of...
A sinusoidal electromagnetic wave of frequency 6.10
A sinusoidal electromagnetic wave of frequency 6.10
A sinusoidal sound wave moves at 336 m/s through a gas in the positive direction of...
A sinusoidal sound wave moves at 336 m/s through a gas in the positive direction of an x axis. At one instant, gas molecule A is at its maximum displacement in the negative direction of the axis while molecule B is at its equilibrium position. The separation between those molecules is 17.4 cm, and the molecules between A and B have intermediate displacements in the negative direction of the axis. (a) What is the minimum frequency of the sound wave?...
Suppose a sinusoidal wave on a string, having amplitude A and travelling in the −xˆ direction,...
Suppose a sinusoidal wave on a string, having amplitude A and travelling in the −xˆ direction, is partially reflected at the point x = 0, so that the reflected wave is in phase with the incident wave at x = 0 but has amplitude kA, where 0 ≤ k ≤ 1 is the reflection coefficient. a) Show that each point on the string undergoes simple harmonic motion and determine how the amplitude of the simple harmonic motion varies with x...
1. At high noon, a sinusoidal electromagnetic wave is heading straight toward San Diego. At a...
1. At high noon, a sinusoidal electromagnetic wave is heading straight toward San Diego. At a 12:00 sharp, the electric field at a certain location is 700 N/C directed South. a) What is the magnitude and direction of the magnetic field at this location at this instant? b) If it takes 1.0 x 10^-15 seconds for the fields at this location to return to the values described above, what is the wavelength of this wave? c) Does this wave fall...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT