Question

In: Physics

Particles of charge -60 E-6 C, +40 E-6 C, and – 95 E-6 C are placed...

Particles of charge -60 E-6 C, +40 E-6 C, and – 95 E-6 C are placed along the x-axis at 0.2 m, 0.4 m and 0.6 m, respectively. (a) Calculate the magnitude of the net electric field x = 0.3 m. (b) Calculate the magnitude of the net force on the +40 E-6 C charge

Solutions

Expert Solution


Related Solutions

A). A positive, +4.70 C charge is placed at the origin and a –2.80 C charge...
A). A positive, +4.70 C charge is placed at the origin and a –2.80 C charge is placed along the y-axis at y = 0.600 m. What is the electric field at the point x = 2.00 m, y = 0.300 m? Be sure to write your answer in unit vector notation. b). How much work would it take to bring a –1.9 C charge to the point x = 2.00 m, y = 0.300 m with the two charges...
Four equally charged particles with charge q are placed at the corners of a square with...
Four equally charged particles with charge q are placed at the corners of a square with side length L, as shown in the figure below. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? (Use any variable or symbol stated above as necessary.) magnitude Q =
Coulomb's Law: As shown in the figure, charge q1 = 2.2 × 10-6 C is placed...
Coulomb's Law: As shown in the figure, charge q1 = 2.2 × 10-6 C is placed at the origin and charge q 2 = -3.30 × 10-6 C is placed on the x-axis, at x = -0.200 m. Where along the x-axis can a third charge Q = -8.30 × 10-6 C be placed so that the resultant force on Q is zero? Answer: .89 m Please show work on how to get this answer
A charge of ? = −5.0 × 10^ -6 ? is placed at the origin. The...
A charge of ? = −5.0 × 10^ -6 ? is placed at the origin. The point P is the point (4.0 × 10^ −2 , 2.0 × 10 ^−2 ) ?. Determine: a) the magnitude of the electric field at the point P b) the x and y components of the electric field at the point P c) the electric potential at the point P
1)What is The charge on 6 alpha particles? 2) Suppose the charge q2 in the figure...
1)What is The charge on 6 alpha particles? 2) Suppose the charge q2 in the figure can be moved left or right along the line connecting the charges q1 and q3. Given that q = +21
A + 4.0 μ C charge is placed 5.0 c m to the left of a − 9.0 μ C charge.
  A + 4.0 μ C charge is placed 5.0 c m to the left of a − 9.0 μ C charge.  A − 1.0 μ C charge will experience no net electrical force acting on it if it is placed __A__ c m to the                            [ Select ]                       ["left", "right"]         of the + 4.0 μ C charge. From previous question: __A__ =
There is a charge of 3.75 x 10-5 C that is placed at the corner of...
There is a charge of 3.75 x 10-5 C that is placed at the corner of a cubical box with sides that are 0.50 m long. A. What is the electric flux through the sides of the box the charge is touching? B. What is the electric flux through the opposite sides of the box?
Consider 2 point particles that have charge +e are at rest and are separated by 3.3×10^-15m....
Consider 2 point particles that have charge +e are at rest and are separated by 3.3×10^-15m. 1) How much work was required to bring them together from a very large of separation distance? 2) If they are released how much kinetic energy will each have when they're separated by twice their separation at release? 3) The mass of each particle is 1.00 amu. what will the speed be of each particle when they are very far from each other?
. Charge q1= 1.80*10-8 C is placed at the origin O. Charge q2 = -7.20*10-8 C...
. Charge q1= 1.80*10-8 C is placed at the origin O. Charge q2 = -7.20*10-8 C is placed at point A ( x =0.180 m) as shown in the figures. a. A charge q3 = 2.5 *10^-8 C is placed at point B ( x = 0.0900 m) as shown in fig.a. Determine the net force F3 exerted on charge q3 by q1 and q2. Give your answer unit vector notation. b. The charge q3 is now placed at point...
a.) Two identical particles of charge 3 μμC and mass 6 μμg are initially at rest...
a.) Two identical particles of charge 3 μμC and mass 6 μμg are initially at rest and held 3 cm apart. How fast will the particles move when they are allowed to repel and separate to very large (essentially infinite) distance? b) Now suppose that the two particles have the same charges from the previous problem, but their masses are different. One particle has mass 6 μμg as before, but the other one is heavier, with a mass of 48...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT