In: Statistics and Probability
Problem (multiple regression). Following data are taken from textbook (p.614)
| 
 Student  | 
 Math-proficiency X1  | 
 SAT-Math X2  | 
 Calculus final (college 1st year) Y  | 
| 
 1  | 
 72  | 
 462  | 
 71  | 
| 
 2  | 
 96  | 
 545  | 
 92  | 
| 
 3  | 
 68  | 
 585  | 
 72  | 
| 
 4  | 
 86  | 
 580  | 
 82  | 
| 
 5  | 
 70  | 
 592  | 
 74  | 
| 
 6  | 
 73  | 
 516  | 
 71  | 
| 
 7  | 
 91  | 
 638  | 
 100  | 
| 
 8  | 
 75  | 
 615  | 
 87  | 
| 
 9  | 
 76  | 
 596  | 
 81  | 
V= 56331/9 = 6259 S=sqrt6259 = 79.1
The least-square equation is Y=-26.6+0.777X1+0.082 X2, that is :
Calculus final=-26.6+0.777 *math-proficiency +0.082* Sat-Math
| 95% Confidence Interval | |||
| X1 | X2 | lower | upper | 
| 70 | 592 | 71.359 | 81.206 | 
| SS | |
| Residual | 97.3230 | 
| Total | 848.8889 | 
The regression equation is:
y = -26.6155 + 0.7763*x1 + 0.0820*x2
R2 = 0.885
88.5% of the variability in the model is explained.
| Source | SS | df | MS | F | p-value | 
| Regression | 751.5659 | 2 | 375.7829 | 23.17 | .0015 | 
| Residual | 97.3230 | 6 | 16.2205 | ||
| Total | 848.8889 | 8 | 
The hypothesis being tested is:
H0: β1 = β2 = 0
H1: At least one βi ≠ 0
The p-value is 0.0015.
Since the p-value (0.0015) is less than the significance level (0.05), we can reject the null hypothesis.
Therefore, we can conclude that the model is significant.
The calculations are:
| R² | 0.885 | |||||
| Adjusted R² | 0.847 | |||||
| R | 0.941 | |||||
| Std. Error | 4.027 | |||||
| n | 9 | |||||
| k | 2 | |||||
| Dep. Var. | Y | |||||
| ANOVA table | ||||||
| Source | SS | df | MS | F | p-value | |
| Regression | 751.5659 | 2 | 375.7829 | 23.17 | .0015 | |
| Residual | 97.3230 | 6 | 16.2205 | |||
| Total | 848.8889 | 8 | ||||
| Regression output | confidence interval | |||||
| variables | coefficients | std. error | t (df=6) | p-value | 95% lower | 95% upper | 
| Intercept | -26.6155 | |||||
| X1 | 0.7763 | 0.1465 | 5.300 | .0018 | 0.4179 | 1.1347 | 
| X2 | 0.0820 | 0.0270 | 3.039 | .0228 | 0.0160 | 0.1481 | 
| Predicted values for: Y | ||||||
| 95% Confidence Interval | 95% Prediction Interval | |||||
| X1 | X2 | lower | upper | lower | upper | |
| 70 | 592 | 71.359 | 81.206 | 65.266 | 87.299 |