In: Finance
(15) The investment department of Big Bucks Businesses (BBB) is examining several different strategies. The forecasting department has indicated that each economic state is equally likely to occur. The estimated return for each security under each state is below. Tarragon Inc. manufactures decorative bottles, and Vintner Corp. is a mining firm. The following table summarizes the data: Economic State Tarragon Vintner Recession -11% 4% Average 20% 8% Boom 40% 6% a. Sara believes that BBB should invest 80% in Tarragon and 20% in Vintner. What is the return and variance on this portfolio? Use the population variance for the securities. b. Can Sara find a combination of Tarragon and Vintner that has no risk? If so, how much should BBB invest in each one? If not, explain why not. Hint: Check the correlation.
Portfolio weightes = | Wt = | 80% | |||||||
Wv = | 20% | ||||||||
Lets first calculate the Return and standard deviation of both the stocks - | |||||||||
Expected return = | Sum (Prob. X Return) | ||||||||
Standard Deviation = | Sq. root of = | Sum (Prob x (x-mean)^2) | |||||||
(i) Tarragon | |||||||||
State | Probability(P) | Return(x) | P x R | X - Mean | (X - Mean)^2 | P x (X - Mean)^2 | |||
Recession | 0.33 | -11 | -3.666667 | -27.3333 | 747.1111 | 249.037 | |||
Average | 0.33 | 20 | 6.666667 | 3.666667 | 13.44444 | 4.481481 | |||
Boom | 0.33 | 40 | 13.33333 | 23.66667 | 560.1111 | 186.7037 | |||
16.33333 | 440.2222 | ||||||||
Expected return = | 16.33333 | ||||||||
(Mean) | |||||||||
Standard Deviation = | Sq. Root of(440.22) | ||||||||
20.98147 | |||||||||
(ii) Vintner | |||||||||
State | Probability(P) | Return(x) | P x R | X - Mean | (X - Mean)^2 | P x (X - Mean)^2 | |||
Recession | 0.333333 | 4 | 1.333333 | -2 | 4 | 1.333333 | |||
Average | 0.333333 | 8 | 2.666667 | 2 | 4 | 1.333333 | |||
Boom | 0.333333 | 6 | 2 | 0 | 0 | 0 | |||
6 | 2.666667 | ||||||||
Expected return = | 6 | ||||||||
(Mean) | |||||||||
Standard Deviation = | Sq. Root of(2.6667) | ||||||||
1.632993 | |||||||||
(A) | Return of a portfolio = | Weighted average of returns | |||||||
0.8 x 16.33 + 0.2 x 6 | |||||||||
14.267 | |||||||||
Variance of portfolio = | [Wa^2 x Sda^2 + Wb^2 x SDb^2 + 2 x wa x wb x COV(a,b) ] | ||||||||
Lets calculate COV(t,v) | |||||||||
State | Probability(P) | Return (T) | Return (V) | (T-Mean) | (V-Mean) | P x (T-Mean) x (V-Mean) | |||
Recession | 0.333333 | -11 | 4 | -27.3333 | -2 | 18.22222 | |||
Average | 0.333333 | 20 | 8 | 3.666667 | 2 | 2.444444 | |||
Boom | 0.333333 | 40 | 6 | 23.66667 | 0 | 0 | |||
20.66667 | |||||||||
COV(T,V) = | P x (T-Mean) x (V-Mean) | 20.66667 | |||||||
Variance = | 0.8^2 x 20.98^2 + 0.2^2 x 1.63^2 + 2 x 0.8 x 0.2 x 20.667 | ||||||||
281.74 + 0.10 + 6.61 | |||||||||
288.46 | |||||||||
(B) | No risk means NO variance or SD. | ||||||||
Portfolio may diversify the risk but the risk can never be zero, | |||||||||
Because the formula for portfolio Variance = | |||||||||
[Wa^2 x Sda^2 + Wb^2 x SDb^2 + 2 x wa x wb x COV(a,b) ] | |||||||||
Here the all 3 terms are positive therefore the sum can never be 0 | |||||||||