Question

In: Math

1. A 10 ft chain weighs 25 lb and hangs from a ceiling with a 5...

1. A 10 ft chain weighs 25 lb and hangs from a ceiling with a 5 lb weight attached to the end. Find the wok done lifting the lower end of the chain and the weight to the ceiling so that they are level with the upper end.

2. Use the method of cylindrical shells to find the volume formula for a sphere with radius r. (in our example we used the disk method. You formula should be the same, but the integral you use to get there should be different.

Solutions

Expert Solution


Related Solutions

A heavy rope, 60 ft long, weighs 0.8 lb/ft and hangs over the edge of a...
A heavy rope, 60 ft long, weighs 0.8 lb/ft and hangs over the edge of a building 110 ft high. How much work is done in pulling the rope to the top of the building?
A body weighing 10 pounds forces hangs from a spring with constant 4/5 lb / ft....
A body weighing 10 pounds forces hangs from a spring with constant 4/5 lb / ft. The medium where the body moves it offers a resistance force to movement that is numerically equal to its instantaneous speed. If the weight is released 5/3 feet above your balance position with a downward speed of 6 feet per second, determine the position the lower the object reaches. Consider negative downward and positive upward magnitudes
A heavy rope, 40 feet long, weighs 0.3 lb/ft and hangs over the edge of a...
A heavy rope, 40 feet long, weighs 0.3 lb/ft and hangs over the edge of a building 110 feet high. Let x be the distance in feet below the top of the building. Find the work required to pull the entire rope up to the top of the building. 1. Draw a sketch of the situation. We can look at this problem two different ways. In either case, we will start by thinking of approximating the amount of work done...
A body weighing 2 pounds forces hangs from a spring with constant 4 lb / ft....
A body weighing 2 pounds forces hangs from a spring with constant 4 lb / ft. The medium in which the body moves offers a resistance force to movement that is numerically equal to its instantaneous speed. If the weight is released 1/3 feet above its balance position with a downward speed of 9 feet per second, determine the speed at which time it passes through the balance position. Consider negative downward and positive upward magnitudes.
A body weighing 128 pounds hangs from a spring with constant 1400 lb/ft. The medium, where...
A body weighing 128 pounds hangs from a spring with constant 1400 lb/ft. The medium, where the body moves, offers a force of opposition to the movement numerically equal to 15 for its instantaneous speed. If the weight is released 2 feet above its balance position, say how fast it should be initially pushed so that after 6 seconds it reaches the lower limit position. Take the constant of gravity as 32 ft/sec^2.
A mass that weighs 32 lb stretches 4/3 ft of a spring. The mass is initially...
A mass that weighs 32 lb stretches 4/3 ft of a spring. The mass is initially released from rest from a point 1 ft below the equilibrium position, and the subsequent movement takes place in a medium that offers a damping force equal to the instantaneous velocity. Using differential equations find the position of the mass at time t if an external force equal to f (t) = 10cos (t) is applied to the mass
Calculate BMI for Mr. A, who weighs 205 lbs and is 5 ft.10 inches tall....
Calculate BMI for Mr. A, who weighs 205 lbs and is 5 ft. 10 inches tall. Based on his BMI is he underweight, normal weight, over weight or obese? (2 POINTS)Sylvia is an inactive 150 pound female who spends most of her time sitting at her desk job. Calculate her total energy expenditure using 40% as her activity factor. (3 POINTS)Hint: Calculate BMR, PA and TEF and then total all three for TEE3. What is the Ideal body weight for...
A spring hangs from the ceiling. A block of 0.450 kg is tied to the other...
A spring hangs from the ceiling. A block of 0.450 kg is tied to the other end of the spring. When released from rest, the block lowers 0.150 m before momentarily reaching rest, after which it moves upwards. (1) What is the spring constant, K? (2) Calculate the angular frequency of the vibrations of the block.
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to...
A mass hangs from the ceiling by a spring. It takes the mass 700 ms to fall from its maximum height of 2.3m to its minimum height of 1.6m above the floor. (a) At what height above the floor does the mass have zero acceleration? (b) What is the maximum speed of this mass? (c) If you start a timer ( t = 0) at the moment when the mass is falling below a height of 1.9m, then at what...
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 10 cm below yi. (a) What is the frequency of the oscillation? (b) What is the speed of the object when it is 8.1 cm below the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT