Question

In: Advanced Math

dy/dt +2y=t-1. ivp y0 =1 solve differntial equation

dy/dt +2y=t-1. ivp y0 =1

solve differntial equation

Solutions

Expert Solution

compare DE with

integration factor is

.

general solution is

take integration by parts

take  

.

rule is  

.

multiply and divide by 4

take

.................(1)

here y(0)=1

...........put it back in equation 1


Related Solutions

Differential Equations Solve for the IVP ty3 dt - ( t4 + y4 ) dy =...
Differential Equations Solve for the IVP ty3 dt - ( t4 + y4 ) dy = 0 y (1) = 2
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0)...
Solve the given initial-value problem. dx/dt = y − 1 dy/dt = −6x + 2y x(0) = 0, y(0) = 0
dx/dt = -5x + y , dy/dt = 4x - 2y
dx/dt = -5x + y , dy/dt = 4x - 2y
Solve the system of equation by method of elimination. dx/dt + x−5y = 0, 4x +dy/dt+...
Solve the system of equation by method of elimination. dx/dt + x−5y = 0, 4x +dy/dt+ 5y = 0, x(0) = −1, y(0) = 2.
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Use a LaPlace transform to solve d^2x/dt^2+dx/dt+dy/dt=0 d^2y/dt^2+dy/dt-4dy/dt=0 x(0)=1,x'(0)=0 y(0)=-1,y'(0)=5
Solve this differential equation (4x - 2y)dx + (2x - 9y)dy = 0
Solve this differential equation (4x - 2y)dx + (2x - 9y)dy = 0
Solve the following initial value problems (1) dy/dt = t + y y(0) = 1 so...
Solve the following initial value problems (1) dy/dt = t + y y(0) = 1 so y(t) = (2)  dy/dt = ty y(0) = 1 so y(t) =
Use Laplace transformations to solve the following differential equations: dy(t)/dt + a y(t) = b; I.C.s...
Use Laplace transformations to solve the following differential equations: dy(t)/dt + a y(t) = b; I.C.s y(0) = c d2y(t)/dt2 + 6 dy(t)/dt + 9 y(t) = 0; I.C.s y(0) = 2, dy(0)/dt = 1 d2y(t)/dt2 + 4 dy(t)/dt + 8 y(t) = 0; I.C.s y(0) = 2, dy(0)/dt = 1 d2y(t)/dt2 + 2 dy(t)/dt + y(t) = 3e-2t; I.C.s y(0) = 1, dy(0)/dt = 1
Consider the system modeled by the differential equation dy/dt - y = t with initial condition y(0) = 1
Consider the system modeled by the differential equation                               dy/dt - y = t    with initial condition y(0) = 1 the exact solution is given by y(t) = 2et − t − 1   Note, the differential equation dy/dt - y =t can be written as                                               dy/dt = t + y using Euler’s approximation of dy/dt = (y(t + Dt) – y(t))/ Dt                               (y(t + Dt) – y(t))/ Dt = (t + y)                                y(t + Dt) =...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT