In: Statistics and Probability
1. A study of 99 dental hygienists were found to have an exposure to mercury vapors at an average of 0.08 mg/m3 (σ=0.005) over a 10-hour work shift. The regulatory limit for mercury vapors is 0.05 mg/m3 over a 10-hour work shift. Preform a one-mean hypothesis test to see if the exposures of the dental hygienists are above that allowable by the regulatory limit. Make sure to follow all 4 steps.
2. Construct a 95% confidence interval for the information in question 1.
1)
Let X be the amount of dental exposure to mercury
vapors          
   
Data Summary

Step 1: Identify null and alternative hypothesis
The null and alternative hypotheses are  
           
Ho : μ = 0.05       μ is the population
mean amount of dental exposure to mercury vapors  
   
Ha : μ > 0.05          
   
          
   
Let α = 0.05          
     ...level of significance
We use T test since population standard deviation is unknown,
and sample size is small      
       
         
Step 2: Calculate t-statistic
Using the below formula, we get the test statistic
Degrees of Freedom      
       
df = n - 1 = 98          
   

t-statistic = 59.6992      
       
       
Step 3: Calculate
p-value     
For t = 59.6992 df = 98 we find the Right Tailed p-value using
Excel function t.dist      
        
p-value = t.dist.rt( 59.6992, 98)      
       
p-value = 0          
   
          
   
Step 4: Decision and
conclusion
0 < 0.05          
   
that is p-value < α      
       
Hence we REJECT Ho      
       
          
   
Conclusion          
   
There exists enough statistical evidence at α = 0.05 to show that
exposures of the dental hygienists are above the allowable
regulatory limit.
       
    
-------------------------------------------------------------------------------------------------------------------
2)
95% confidence interval for the population mean
Since the population standard deviation is unknown, we use the
t-distribution
Degrees of Freedom = df = n - 1 = 99 - 1 = 98
For 95% Confidence interval
α = 0.05,      α/2 = 0.025
From t tables of Excel function T.INV.2T (α, degrees of freedom) we
find the t value
t = T.INV.2T (0.05, 98) = 1.984
We take the positive value of t
Confidence interval is given by
= (0.079, 0.081)
95% Confidence interval is 
mg/m3
--------------------------------------------------------------------------------------------------------------------
If you are satisfied with the solution, kindly give a thumbs
up.