Question

In: Advanced Math

A= 1 2 4 0 1 -2 -1 0 1 2 0 3 8 1 4...

A=

1 2 4 0 1
-2 -1 0 1 2
0 3 8 1 4

. Let W denote the row space for A.

(a) Find an orthonormal basis for W and for W⊥.

(b) Compute projW⊥(1 1 1 1 1 ).

Solutions

Expert Solution

a) Given is the matrix

The space is row space. We perform Gram Schmidt on the row vectors of the above matrix. Let

Let

Then is an orthonormal basis of .

To find orthonormal basis of we first find a basis of it. Note that is the null space of the above matrix. Therefore, we need to perform elementary row operations. We get

Thus, a typical null vector satisfies

Thus, basis for is

To orthonormalize this, we do Gram-Schmidt: Let

Let

and

Then is an orthonormal basis for .

b) We have


Related Solutions

A = (1 −7 5 0 0 10 8 2 2 4 10 3 −4 8...
A = (1 −7 5 0 0 10 8 2 2 4 10 3 −4 8 −9 6) (1) Count the number of rows that contain negative components. (2) Obtain the inverse of A and count the number of columns that contain even number of positive components. (3) Assign column names (a,b,c,d) to the columns of A. (4) Transform the matrix A into a vector object a by stacking rows. (5) Replace the diagonal components of A with (0,0,2,3). Hint:...
DATA 3 8 2 15 2 2 0 0 4 5 2 7 0 1 5...
DATA 3 8 2 15 2 2 0 0 4 5 2 7 0 1 5 3 0 2 5 4 1 6 9 5 3 1 2 10 6 1 1 2 1 19 6 6 6 7 0 4 1 1 1 0 1 9 2 2 2 1 16 10 10 5 2 3 1 4 4 4 3 6 2 8 5 2 7 1 6 4 0 3 1 1 1 Background: A group of...
x (Bins) frequency 0 0 1 0 2 0 3 2 4 5 5 8 6...
x (Bins) frequency 0 0 1 0 2 0 3 2 4 5 5 8 6 13 7 33 8 42 9 66 10 77 11 105 12 103 13 110 14 105 15 84 16 70 17 51 18 40 19 27 20 27 21 15 22 5 23 7 24 2 25 2 26 1 27 0 28 0 29 0 30 0 (7) On the Histogram worksheet, calculate all frequencies of the distribution using the table shown....
exampleInput.txt 1 2 3 0 2 3 4 0 1 3 5 0 1 2 6...
exampleInput.txt 1 2 3 0 2 3 4 0 1 3 5 0 1 2 6 1 5 6 8 2 4 6 7 3 4 5 9 10 5 8 9 4 7 9 6 7 8 6 How can I detect when 'cin' starts reading from a new line. The amount of numbers in each row is unknown. I need them in type 'int' to use the data.
0. 0. 0. 0.0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 2. 2. 2. 3. 4.
0. 0. 0. 0.0. 0. 0. 0. 0.   1. 1. 1. 1. 1. 1. 2. 2. 2. 3.   4. A.)MEAN – B.)MEDIAN - C.)MODE - D.)STANDARD DEVIATION – E.)5 NUMBER SUMMARY – F.)BOX AND WHISKERS PLOT – G.) OUTLIERS-
0. 0. 0. 0.0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 2. 2. 2. 3. 4.
0. 0. 0. 0.0. 0. 0. 0. 0.   1. 1. 1. 1. 1. 1. 2. 2. 2. 3.   4. A.)5 NUMBER SUMMARY – B.)BOX AND WHISKERS PLOT – C.) OUTLIERS-
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a)...
A:=<<0,-1,1>|<4,0,-2>|<2,-1,0>|<2,1,1>>; Matrix(3, 4, [[0, 4, 2, 2], [-1, 0, -1, 1], [1, -2, 0, 1]]) (a) Use the concept of matrix Rank to argue, without performing ANY calculation, why the columns of this matrix canNOT be linerly independent. (b) Use Gauss-Jordan elimination method (you can use ReducedRowEchelonForm command) to identify a set B of linearly independent column vectors of A that span the column space of A. Express the column vectors of A that are not included in the set...
Given: x y -5 1 -4 5 -3 4 -2 7 -1 10 0 8 1...
Given: x y -5 1 -4 5 -3 4 -2 7 -1 10 0 8 1 9 2 13 3 14 4 13 5 18 What are the confidence limits (alpha = 0.05) for the true mean value of Y when X = 3?
Production costs Worker-hours (Input) Widgets (Output) 0 0 1 3 2   8 3 15 4 20...
Production costs Worker-hours (Input) Widgets (Output) 0 0 1 3 2   8 3 15 4 20 5 24 6 27 7 29 8 30 9 30 10 29 Fixed cost = $120 Variable cost = $15 a) Given the above widget production function information, graph the total product curve, clearly labeling everything. b) Given the cost information above, graph the total cost curve. Add columns to the table as needed. c) Describe the pattern of marginal returns and marginal costs....
given the sequences  x1 = [2, 6, -4, 1] x2 = [8, 0, 2, 0, -9,...
given the sequences  x1 = [2, 6, -4, 1] x2 = [8, 0, 2, 0, -9, 0, 1, 0] x3 = [2, 0, -8, -8, 2] x4 = [0, 1, 5i, 0, 6i, 0] x5 = [9, 3, 7] plot the 1. DFT magnitude of the computed sequences in MATLAB  2. phase responses in degrees and radians against frequency and number of samples 3. comment on the plots
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT