Question

In: Physics

A thin, horizontal 11cm×11cm11cm×11cm copper plate is charged with 1.7×1010 electrons. Consider the electrons are uniformly...

A thin, horizontal 11cm×11cm11cm×11cm copper plate is charged with 1.7×1010 electrons. Consider the electrons are uniformly distributed on the surface.

Part A

What is the strength of the electric field 0.1 mmmm above the center of the top surface of the plate?

Express your answer using two significant figures.

Part B

What is the direction of the electric field 0.1 mmmm above the center of the top surface of the plate?

What is the direction of the electric field 0.1 above the center of the top surface of the plate?

away from the plate

toward the plate

Part C

What is the strength of the electric field at the plate's center of mass?

Part D

What is the strength of the electric field 0.1 mmmm below the center of the bottom surface of the plate?

Express your answer using two significant figures.

Part E

What is the direction of the electric field 0.1 mmmm below the center of the bottom surface of the plate?

Please I am stuck in this question. I am confused with the 1.7*10^10 electrons

Solutions

Expert Solution

given

Area, A = 11*11 cm^2

= 121 cm^2

= 121*10^-4 m^2

= 0.0121 m^2

magnitude of charge, Q = 1.7*10^10 e

= 1.7*10^10*1.6*10^-19

= 2.72*10^-9 C

magnitude of surface charge density, sigma = Q/A

= 2.72*10^-9/0.0121

= 2.248*10^-7 C/m^2

A) strength of the electtric field 0.1 mm above center of the top surface of the plate,

E = sigma/(2*epsilon)

= 2.248*10^-7/(2*8.854*10^-12)

= 1.3*10^4 N/C

B) towards the plate.
Because, the plate has negative charge.

C) Zero.

Because, inside a conductor in electrostatic equilibrium electric field is zero.

D) strength of the electtric field 0.1 mm below the center of the bottom surface of the plate,

E = sigma/(2*epsilon)

= 2.248*10^-7/(2*8.854*10^-12)

= 1.3*10^4 N/C

E) towards the plate.
Because, the plate has negative charge.

Note : A positive charge always produce electric field radially outward and a negative charge always produce electric field radially inward.


Related Solutions

A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 15.0 nC are placed side by side, 4.20 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 5.00 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 5.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 5.00 nC are placed side by side, 4.40 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 14.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 14.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 14.0 nC are placed side by side, 4.40 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 7.00 nCnC are placed side by side, 4.10 cmcm apart. What are the electric field strengths E1E1 to E3E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1, E2, and E3?
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to -15.0 nC are placed side by side, 3.50 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 7.00 nCnC are placed side by side, 4.10 cmcm apart. What are the electric field strengths E1E1 to E3E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1, E2, and E3.
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 15.0 nC are placed side by side, 3.80 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 13.0 nC nC and a 10-cm-long thin plastic...
A 10-cm-long thin glass rod uniformly charged to 13.0 nC nC and a 10-cm-long thin plastic rod uniformly charged to - 13.0 nC nC are placed side by side, 4.20 cm cm apart. What are the electric field strengths E 1 E1E_1 to E 3 E3E_3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength of E1, E2, E3?
A 10-cm-long thin glass rod uniformly charged to 10.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 10.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 10.0 nC are placed side by side, 3.90 cm apart. What are the electric field strengths E1to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods?
A 10-cm-long thin glass rod uniformly charged to 8.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 8.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 8.00 nCnC are placed side by side, 4.50 cmcm apart. What are the electric field strengths E1E1E_1 to E3E3E_3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Ask for the  electric field strength E1, E2 and E3
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT