Question

In: Physics

For questions 1-3 use the figure below and give the direction of the magnetic force on the charged particle (black dot).

For questions 1-3 use the figure below and give the direction of the magnetic force on the charged particle (black dot). Note that for 1 and 2 the B-field is into the page and for 3 it is to the right. Note also the sign of the charge on the particle is given in parentheses (+) or (-). 

Solutions

Expert Solution

The magnetic force is given by the Lorentz force law and is

F = Q(v x B)

Where the right-hand rule gives the direction of the cross-product.

1) For a particle (1), the right-hand rule gives a cross-product direction to the right (point your index finger of your right hand along the velocity vector of the particle and curl your middle finger in the direction of the magnetic field, and your thumb gives the direction of the force.) But because the charge of the particle is negative (i.e., Q = -q), the negative sign in front of the Lorentz force law for this particle (F =-q(v x B)) will give a vector in the opposite direction (to the right), so our answer is (a)right.

2) For a particle (2), the right-hand rule gives a direction to the right. The charge on particle 2 is positive, so the Lorentz force law just gives us a force in the direction given by the righthand rule. So our answer is (a) right.

3) For a particle (3), the right-hand rule gives us a direction out of the page, but because the charge on particle 3 is negative, the Lorentz force law gives us a force in the opposite direction our answer is e) into the page.

Note that the answers I have given are the instantaneous forces on the particles and will not be correct the instant after the magnetic force has changed the direction of these particles' velocities. Because the magnetic fields in this problem are uniform, the particles will have a continuous force on them directed perpendicular to their velocity vector to be continuously deflected in that direction. This type of force is identical to centripetal acceleration, so the particles will continue in a uniform circular motion as long as the field remains uniform.

Related Solutions

Magnetic Force Vector Drawing The situations below, a charged particle enters a region of uniform magnetic...
Magnetic Force Vector Drawing The situations below, a charged particle enters a region of uniform magnetic field. Draw a vector to represent the direction of the magnetic force on the particle. Part A Draw the vector starting at the location of the charge. The location and orientation of the vector will be graded.The length of the vector will not be graded.
1. Charged particles moving in a magnetic field experience a force a in their direction of...
1. Charged particles moving in a magnetic field experience a force a in their direction of travel. b opposite to their direction of travel. c perpendicular to their direction of travel. d That does not depend on their direction of travel. 2. The unit for the magnetic field is the a newton. b joule per coulomb. c volt. d tesla. 3. An electron (m = 9.11x10-31 kg, q = 1.60x10-19 C) is moving in a uniform magnetic field, perpendicular to...
A positively-charged particle is moving in the +x-direction. A uniform magnetic field in the +z direction...
A positively-charged particle is moving in the +x-direction. A uniform magnetic field in the +z direction is then applied. What is the direction of the magnetic force on the charge?
What is the direction of the electric field at the dot in the figure (Figure 1) ?
Part AWhat is the direction of the electric field at the dot in the figure (Figure 1) ?a) to the rightb) downc) upd) to the leftPart BWhat is the magnitude of the electric field at the dot?Express your answer to one significant figure and include the appropriate units.
3-) Consider a charged particle q moves with constant velocity v in z direction. Determine Poynting...
3-) Consider a charged particle q moves with constant velocity v in z direction. Determine Poynting vector S, and determine the total power through the northern hemisphere of radius a centered at the origin, at the instant q is at its center.
Use the table below to answer the following questions: Labor Force of an Economy Labor Force...
Use the table below to answer the following questions: Labor Force of an Economy Labor Force Number of People (millions) Employed 157.3 Structurally unemployed 5.2 Cyclically unemployed 5.3 Frictionally unemployed 2.9 Instructions: Round your answers to two decimal places. a. Calculate the actual unemployment rate and the natural rate of unemployment for this economy.       Actual rate of unemployment: 7.85% Correct      Natural rate of unemployment: 4.75% Correct b. Now assume that cyclical unemployment decreases by 1.7 million while structural unemployment increases...
The figure shows electrons 1 and 2 on an x axis and charged ions 3 and...
The figure shows electrons 1 and 2 on an x axis and charged ions 3 and 4 of identical charge -q and at identical angles θ. Electron 2 is free to move; the other three particles are fixed in place and are intended to hold electron 2 in place. For physically possible values of q ≤ 5e, what are the (a) smallest, (b) second smallest, and (c) third smallest values of θ for which electron 2 is held in place?
1. Give a short answer to the following questions: (a) Define magnetization in terms of magnetic...
1. Give a short answer to the following questions: (a) Define magnetization in terms of magnetic dipoles in matter. What is its unit? (b) What is Coulomb gauge? Use it to show the normal component of the vector potential must be continuous at the boundary of two materials. (c) Use one of Maxwell's equations (which one?) to show that E is perpendicular to the wave vector k in a plane electromagnetic wave (easiest to use complex notation).
A charged particle with a positive net electric charge travels with a velocity of 2x107m·s-1 in the positive -direction between two plates of a parallel plate capacitor.
A charged particle with a positive net electric charge travels with a velocity of 2x107m·s-1 in the positive -direction between two plates of a parallel plate capacitor. A uniform magnetic field of 4 mt that is directed into the page also exists in the same location as the capacitor. a If the parallel plates of the capacitor are separated by 2 cm, determine the voltage required over the plates in order to stop any deflection of the particle. b. If there is...
What are examples of the five properties associated with force? 1. Direction: 2. Orientation: 3. Magnitude:...
What are examples of the five properties associated with force? 1. Direction: 2. Orientation: 3. Magnitude: 4. Point of Application: 5. Line of action:
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT