Question

In: Economics

Consider a team that chooses attendance Q(measured in millions) to maximize profit. Let the inverse demand...

Consider a team that chooses attendance Q(measured in millions) to maximize profit. Let the inverse demand curve be  

            P = 100 – 20Q

        which has the associated marginal revenue function equal to

            MR = 100 – 40Q

        Also, let the total cost function be given by

            TC = 50 + 4Q

        for which the marginal cost is MC= 4. Find the team’s optimal output, price, and profit.

Solutions

Expert Solution


Related Solutions

Let the demand function for a product be Q = 50 − 5P. The inverse demand...
Let the demand function for a product be Q = 50 − 5P. The inverse demand function of this demand function is: 1) P = 10 + 0.2Q 2) P = 50 − 0.2Q 3) P = 10 − 0.2Q 4) Q = 25 + P Please give the # of the answer.
Monopoly with linear inverse demand. Consider a monopolist facing a linear inverse demand curve p(q)= a-...
Monopoly with linear inverse demand. Consider a monopolist facing a linear inverse demand curve p(q)= a- bq, and cost function C(q)= F + cq, where F denotes its fixed costs and c represents the monopolist's (constant) magical cost a>c 1. Graph demand, marginal revenue and marginal cost. Label your graph carefully, including intercepts 2. Solve the profit maximizing output q^m. To do this, first write down the expression for MR=MC and solve for the optimal quantity. Next find the price...
Consider a market for a good characterized by an inverse market demand P(Q) = 200−Q. There...
Consider a market for a good characterized by an inverse market demand P(Q) = 200−Q. There are two firms, firm 1 and firm 2, which produce a homogeneous output with a cost function C(q) =q2+ 2q+ 10. 1. What are the profits that each firm makes in this market? 2. Suppose an advertising consultant approaches firm 1 and offers to increase consumers’ value for the good by $10. He offers this in exchange for payment of $200. Should the firm...
Consider a market where inverse demand is given by P = 40 − Q, where Q...
Consider a market where inverse demand is given by P = 40 − Q, where Q is the total quantity produced. This market is served by two firms, F1 and F2, who each produce a homogeneous good at constant marginal cost c = $4. You are asked to analyze how market outcomes vary with industry conduct: that is, the way in which firms in the industry compete (or don’t). First assume that F1 and F2 engage in Bertrand competition. 1....
2. Consider an inverse demand curve and inverse supply curve given by Q D = 52,...
2. Consider an inverse demand curve and inverse supply curve given by Q D = 52, 000 − 200P Q S = −8, 000 + 400P a. Find equilibrium price. b. Find equilibrium price. c. Now solve for producer surplus at equilibrium. Show your work! HINT: You will need to know find what price is when the supply curve crosses the y-axis. d. And do the same for consumer surplus at equilibrium. Show your work! e. What if the government...
Consider the following inverse demand function, p(Q) = a-bQ, Q = q1 +q2, where a and...
Consider the following inverse demand function, p(Q) = a-bQ, Q = q1 +q2, where a and b are positive parameters and qi denotes firm i's output, i = 1, 2. Assume that the total cost of firm i is cqi2/2, with c > 0. Firms choose quantities simultaneously and non cooperatively (Cournot competition). The Cournot game described above is infinitely repeated. Firms use grim trigger strategies (infinite Nash reversion). Firms discount future profits at a rate r > 0. a)...
Consider a market where the inverse demand function is p =100 – Q, Q = q1+q2....
Consider a market where the inverse demand function is p =100 – Q, Q = q1+q2. Both firms in the market have a constant marginal cost of $10 and no fixed costs. Suppose these two firms are engaged in Cournot competition. Now answer the following questions: a)      Define best response function. Find the best response function for each firm. b)      Find Cournot-Nash equilibrium quantities and price. c)      Compare Cournot solution with monopoly and perfect competitive solutions.
Consider a Cournot duopoly with the following inverse demand function:p(Q) =a−Q where p is the price...
Consider a Cournot duopoly with the following inverse demand function:p(Q) =a−Q where p is the price of the product and Q is the total amount of goods exchanged in the market. The total costs areC(q1) = 300q1, C(q2) = 300q2 for firm 1 and firm 2, respectively. But the demand is uncertain (i.e., a new product may be introduced soon which will decrease the demand drastically). Firm 1 learns whether demand will be high (a =1800) or small (a=900) before...
Consider a market where the inverse demand function is P = 100 - Q. All firms...
Consider a market where the inverse demand function is P = 100 - Q. All firms in the market have a constant marginal cost of $10, and no fixed costs. Compare the deadweight loss in a monopoly, a Cournot duopoly with identical firms, and a Bertrand duopoly with homogeneous products.
Consider a market with two firms selling homogenous goods. Let the inverse demand curve be ?...
Consider a market with two firms selling homogenous goods. Let the inverse demand curve be ? = 1210 − 2(?1 + ?2) where p denotes market price and q1, q2 denotes output quantity from firm 1 and 2 respectively. The firms have identical constant marginal costs; c = 10. Assume first that the firms compete ala Cournot: a) Derive best response functions and illustrate equilibrium in a diagram b) Derive equilibrium quantities and prices c) Compute profit for each firm....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT