Question

In: Physics

a plane electromagnetic wave travels in a lossless environment with physical properties ε = ε0, μ...

a plane electromagnetic wave travels in a lossless environment with physical properties ε = ε0, μ = 4μ0. The electric field component of this wave is 50 sin (--t - 5x) ay [V / m]. This wave; the wave will enter a second environment with physical properties ε = 4ε0, μ = μ0, σ = 0,1 S / m at x = 0 and perpendicular to the x axis;
(a) reflection coefficient, progress coefficient, standing wave ratio
(b) electric field and magnetic field vector components of the reflected and moving wave
(c) calculate the time average of the Poynting vector in both environments

Solutions

Expert Solution


Related Solutions

A plane electromagnetic wave of wavelength 2.00 m travels in vacuum in the negative x-direction with...
A plane electromagnetic wave of wavelength 2.00 m travels in vacuum in the negative x-direction with its magnetic field vector B, of amplitude 1.20 μT, directed along the positive y-axis.             (i)   What is the frequency, f, of the wave? [2]             (ii) What are the direction and the amplitude, Eo, of the electric field vector E associated with the wave ? [4]             (iii) If  B =  Bocos ( kx +  ωt ) in SI units , what are the values of...
A plane electromagnetic wave is incident at an angle θ0 on a plane conductor of conductivity...
A plane electromagnetic wave is incident at an angle θ0 on a plane conductor of conductivity σ (ε = 1, μ = 1), Calculate the reduction in amplitude of the wave upon reflection.(Assume the conductivity to be large, but not infinite)
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (3.1 V/m) cos[(? × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex =Ey =0 and Ez =(2V/m)cos(3.14∗10^−15s^−1(t− x/c)). (a) What is the amplitude of the magnetic field component? (b) Parallel to which axis does the magnetic field oscillate? (c) When the electric field component is in the positive direction of the z axis at a certain point P, what is the direction of the magnetic field component there?
The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 684 nm, propagating...
The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 684 nm, propagating in a vacuum in the z-direction is described by B⃗ =(B1sin(kz−ωt))(i^+j^)B→=(B1sin⁡(kz−ωt))(i^+j^) where B1 = 5.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is k, the wavenumber of this wave? m-1 2) What is zmax, the distance along the positive z-axis to the position where the magnitude of the magnetic field is...
Consider an electromagnetic harmonic plane wave, where the peak electric field amplitude is 1 N/C. a)...
Consider an electromagnetic harmonic plane wave, where the peak electric field amplitude is 1 N/C. a) What is the irradiance of this plane wave? b) Consider such a wave with a frequency in the centre of the visible band of the electromagnetic spectrum. What is the number of photons passing through an area of 1 m2 in 1 second? (Assume the area the light is passing through is perpendicular to the wave’s propagation direction). c) Now consider two additional waves...
Consider a harmonic electromagnetic plane wave with angular frequency ω and propagation vector k=(kx,ky,kz) (i.e., propagating...
Consider a harmonic electromagnetic plane wave with angular frequency ω and propagation vector k=(kx,ky,kz) (i.e., propagating in an arbitrary direction). The electric field vector is E=(Ex,Ey,Ez) with amplitudes (Exo,Eyo,Ezo) and the magnetic field vector is B=(Bx,By,Bz) with amplitudes (Bxo,Byo,Bzo). a) Write an expression for the electric and magnetic waves using complex representation. b) Using the laws of electromagnetism without sources (Maxwell’s equations in free space), prove that k × E = ωB, and k · E = 0 c) What...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT