Question

In: Physics

A plasma of uniform charge density po= is contained within a cylindrical shape, of infinite length...

A plasma of uniform charge density po= is contained within a cylindrical shape, of infinite length and radius ro. With what speed must a particle of mass m and charge q perpendicularly strike the cylinder in order to bring it to rest at the center of the cylinder?

Solutions

Expert Solution

Given that the cylindrical system having charge density o .

Now, from gauss theorem we know that

E(2*pi*x*t) = o*(2*pi*x2*t)/o

E = o*x/o

Here , if a charge 'q' having mass 'm' strikes perpendicular to the cylindrical plasma ,then electric field exerts a force on the charge ,

F =q*E = q* o*x/o

acceleration , a =  q* o*x/o*m

(d/dx) *(dx/dt) =  q* o*x/o*m

v*dv/dt =  q* o*x/o*m

(vo to 0) v.dv =  q* o/o*m(ro to 0) x.dx

Here vo is initial velocity of charge

[v2/2] vo to 0 = q* o*/o*m [x2/2]ro to 0

vo2/2 =  q* o*ro2/2*o*m

vo = ro * sqrt[ q* o/o*m ]


Related Solutions

The volumetric charge density in a cylinder with a radius of infinite length changes from the...
The volumetric charge density in a cylinder with a radius of infinite length changes from the axis to ?? = ??. Here k is a constant. Find the electric field inside (r <a) and outside   (r> a) of the cylinder.
An infinite plane slab of thickness 2H has a uniform charge density p , where z...
An infinite plane slab of thickness 2H has a uniform charge density p , where z is defined to be at the center of the slab. In the z direction, the slab extends from z = -H to z = +H. Find the electric field both inside and outside the slab. (Hint: Outside the slab, Qenc does not depend on z anymore.)
A horizontal insulating rod, of length L, has a uniform charge density of theta on its...
A horizontal insulating rod, of length L, has a uniform charge density of theta on its right half and of negative theta on its left half. Find the net force on a test charge of magnitude q placed to the right of the rod, on the axis of the rod, a distance x from the center of the rod (where x > L=2).
E field of a uniform and planar distribution of charge A uniform surface charge density of...
E field of a uniform and planar distribution of charge A uniform surface charge density of 5nC/m2 is present in the region x=0, -2<y<2 and all z. if ε=ε0, find E at: a) PA(3,0,0) b) PB(0,3,0).
E field of a uniform and planar distribution of charge A uniform surface charge density of...
E field of a uniform and planar distribution of charge A uniform surface charge density of 5nC/m2 is present in the region x=0, -2<y<2 and all z. if ε=ε0, find E at: a) PA(3,0,0) b) PB(0,3,0)
An infinitely long solid cylindrical insulator of radius 13.0 cm has a non-uniform volume charge density...
An infinitely long solid cylindrical insulator of radius 13.0 cm has a non-uniform volume charge density of =4r3 where is in Cm3 when r is in meters. Calculate the magnitude of the electric field at a distance of 17.00 cm from the axis of the cylinder.
Given an infinite sheet of charge occupying the x-y plane such that the charge density is...
Given an infinite sheet of charge occupying the x-y plane such that the charge density is constant and uniform, find the electric field at any point on the z-axis by: A) Using the point charge formula for the electric field directly in cartesian coordinates. B) Using the point charge formula for the electric field directly in cylindrical coordinates. C) Using the point charge formula for potential in cylindrical coordinates and taking the gradient. DO NOT USE GAUSS'S LAW
Given is the rod of length L with the linear charge of density ?=?/? . The...
Given is the rod of length L with the linear charge of density ?=?/? . The rod lies on the x axis with its midpoint at the origin. Find the electric field vector on y axis resulting from such continuous system of charge at distance y from the origin. Use this result to obtain the expression for electric field at distance y from the infinitely long wire.
Consider a solid ball of uniform charge density and net charge 2Q and radius r1 that...
Consider a solid ball of uniform charge density and net charge 2Q and radius r1 that is surrounded by a hollow sphere of charge –Q with radius r2. Give expressions for the electric field in the three regions: inside (r < r1) between (r1 < r < r2) and outside (r2 < r). Show your work.
A proton is launched from an infinite plane of charge with surface charge density -1.90×10-6 C/m2....
A proton is launched from an infinite plane of charge with surface charge density -1.90×10-6 C/m2. If the proton has an initial speed of 3.70×107 m/s, how far does it travel before reaching its turning point? 1.20×10-6 m 1.80×10-6 m 66.6 m 133 m
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT