In: Statistics and Probability
| Twenty First Century Laundry | |||||||||
| 69 | 3 | 1 | 72 | 93 | 3 | 80 | 6 | 5 | 36 |
| 42 | 2 | 64 | 44 | 15 | 77 | 49 | 85 | 82 | 102 |
| 28 | 70 | 41 | 30 | 25 | 45 | 31 | 49 | 49 | 49 |
| 13 | 42 | 27 | 13 | 45 | 31 | 14 | 34 | 32 | 39 |
| 19 | 29 | 12 | 19 | 30 | 14 | 21 | 14 | 14 | 52 |
| 7 | 13 | 18 | 8 | 14 | 19 | 18 | 21 | 21 | 5 |
| 94 | 19 | 6 | 107 | 19 | 2 | 41 | 7 | 15 | 15 |
| 53 | 8 | 90 | 55 | 2 | 64 | 16 | 12 | 27 | 53 |
| 35 | 16 | 35 | 38 | 3 | 9 | 9 | 9 | 11 | 39 |
| 16 | 17 | 18 | 23 | 74 | 25 | 26 | 58 | 59 | 62 |
Construct and show one box plot for the overall data. clearly show the values for the 5 box plot statistics
What are the values for the upper outlier and lower outlier limits?
Are there any outliers?
Solution:
We have the following summary statistics for the given data on Twenty-First-Century Laundry:
|
Case Processing Summary |
||||||
|
Cases |
||||||
|
Valid |
Missing |
Total |
||||
|
N |
Percent |
N |
Percent |
N |
Percent |
|
|
Tweenty_First_Century_Laundry |
100 |
100.0% |
0 |
0.0% |
100 |
100.0% |
|
Descriptive Statistics |
|||||
|
N |
Minimum |
Maximum |
Mean |
Std. Deviation |
|
|
Tweenty_First_Century_Laundry |
100 |
1 |
107 |
32.92 |
25.899 |
|
Valid N (listwise) |
100 |
||||
|
Descriptives |
||||
|
Statistic |
Std. Error |
|||
|
Tweenty_First_Century_Laundry |
Mean |
32.92 |
2.590 |
|
|
95% Confidence Interval for Mean |
Lower Bound |
27.78 |
||
|
Upper Bound |
38.06 |
|||
|
5% Trimmed Mean |
31.07 |
|||
|
Median |
25.50 |
|||
|
Variance |
670.741 |
|||
|
Std. Deviation |
25.899 |
|||
|
Minimum |
1 |
|||
|
Maximum |
107 |
|||
|
Range |
106 |
|||
|
Interquartile Range |
35 |
|||
|
Skewness |
.994 |
.241 |
||
|
Kurtosis |
.233 |
.478 |
||
The box plot is given below:

|
Statistics |
||
|
Tweenty_First_Century_Laundry |
||
|
N |
Valid |
100 |
|
Missing |
0 |
|
|
Percentiles |
25 |
14.00 |
|
50 |
25.50 |
|
|
75 |
49.00 |
|
We see that first quartile Q1 = 14 and third quartile Q3 = 49.
So, Inter Quartile Range(IQR) = (Q3-Q1) = ( 49 - 14 ) = 35.
So, the lower outlier limit, L = Q1 - 1.5*IQR = 14 - 1.5*35 = -38.5.
Since our all observations are positive, L = 0.
The upper outlier limit is U = Q3+1.5*IQR = 49 + 1.5*35 = 101.5.
From the box plot, we observe that there two outliers and they are given below: 107 and 102.