Question

In: Physics

Two automobiles collide. One automobile of mass 1.13 x 103 kg is initially traveling at 25.7m/s...

Two automobiles collide. One automobile of mass 1.13 x 103 kg is initially traveling at 25.7m/s [E]. The other automobile of mass 1.25 x 103 kg has an initial velocity of 13.8 m/s [W]. The vehicles become attached during the collision

            (a) Determine the magnitude and direction of the change in momentum for each automobile in question 7.

            (b) How are these two quantities related?

            (c) What is the total change in the momentum of the two automobile systems?

Solutions

Expert Solution


Related Solutions

Two cars approach an ice-covered intersection. One car, of mass 1.22 103 kg, is initially traveling...
Two cars approach an ice-covered intersection. One car, of mass 1.22 103 kg, is initially traveling north at 10.6 m/s. The other car, of mass 1.66 103 kg, is initially traveling east at 10.6 m/s. The cars reach the intersection at the same instant, collide, and move off coupled together. Find the velocity of the center of mass of the two-car system just after the collision. magnitude direction_______ north of east
Two automobiles with equal mass approach an intersection.  One vehicle is traveling eastward and the other...
Two automobiles with equal mass approach an intersection.  One vehicle is traveling eastward and the other vehicle is traveling northward.  The vehicles collide and stick together. After impact they travel on the road and then travel on a gravel covered shoulder until both cars stop. Only the northward bound vehicle left skid marks at an angle of 55 degrees north of east.  A police officer posted at the intersection clocked the eastward vehicle at 29 mph before impact. The northward...
Two automobiles with equal mass approach an intersection. One vehicle is traveling eastward and the other...
Two automobiles with equal mass approach an intersection. One vehicle is traveling eastward and the other vehicle is traveling northward. The vehicles collide and stick together. After impact they travel on the road and then travel on a gravel covered shoulder until both cars stop. Only the northward bound vehicle left skid marks at an angle of 55 degrees north of east. A police officer posted at the intersection clocked the eastward vehicle at 29 mph before impact. The northward...
A car with a mass of 980 kg is initially traveling east toward an intersection with...
A car with a mass of 980 kg is initially traveling east toward an intersection with a speed of vc = 19.6 m/s and a 1500 kg pickup is traveling north toward the same intersection. The car and truck collide at the intersection and stick together. After the collision, the wreckage (car and truck) moves off in a direction of 35.0° above the x-axis. Determine the initial speed of the truck and the final speed of the wreckage. a.   initial...
A car with a mass of 980 kg is initially traveling east toward an intersection with...
A car with a mass of 980 kg is initially traveling east toward an intersection with a speed of vc = 18.8 m/s and a 1500 kg pickup is traveling north toward the same intersection. The car and truck collide at the intersection and stick together. After the collision, the wreckage (car and truck) moves off in a direction of 45.0° above the x-axis. Determine the initial speed of the truck and the final speed of the wreckage. initial speed...
A 0.00410–kg bullet traveling horizontally with a speed of 1.00 ✕ 103 m/s enters a 21.0–kg...
A 0.00410–kg bullet traveling horizontally with a speed of 1.00 ✕ 103 m/s enters a 21.0–kg door, embedding itself 19.0 cm from the side opposite the hinges as in the figure below. The 1.00–m–wide door is free to swing on its hinges. (a) Before it hits the door, does the bullet have angular momentum relative to the door's axis of rotation? Yes or No      Explain. (b) Is mechanical energy conserved in this collision? Answer without doing a calculation. Yes or...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B, of mass 1400 kg , is going from north to south at 14.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B, of mass 1300 kg , is going from north to south at 17.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of...
Two cars collide at an intersection. Car A, with a mass of 1900 kg , is...
Two cars collide at an intersection. Car A, with a mass of 1900 kg , is going from west to east, while car B , of mass 1500 kg , is going from north to south at 12 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
A body of mass 15.0 kg is traveling at 5.3 m/s along the positive x-axis with...
A body of mass 15.0 kg is traveling at 5.3 m/s along the positive x-axis with no external force acting. At a certain instant an internal explosion occurs, splitting the body into two chunks of 7.5 kg mass each. The explosion gives the chunks an additional 16 J of kinetic energy. Neither chunk leaves the line of original motion. Determine the speed and direction of motion of each of the chunks after the explosion. Enter the larger velocity. Enter the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT