Question

In: Physics

A thin, light string is wrapped around the rim of a 3.65kgsolid uniform disk that is...

A thin, light string is wrapped around the rim of a 3.65kgsolid uniform disk that is 31.5cm in diameter. A person pulls on the string with a constant force of 101.5Ntangent to the disk. Find the angular acceleration of the disk about its center of mass. Find the linear acceleration of its center of mass. If the disk is replaced by a hollow thin-walled cylinder of the same mass and diameter, what will be the angular acceleration of the disk about its center of mass? If the disk is replaced by a hollow thin-walled cylinder of the same mass and diameter, what will be the linear acceleration of its center of mass?

Solutions

Expert Solution


Related Solutions

A rope is wrapped around the rim of a large uniform solid disk of mass 155...
A rope is wrapped around the rim of a large uniform solid disk of mass 155 kg and radius 2.50 m. The horizontal disk is made to rotate by pulling on the rope with a constant force of 195 N. If the disk starts from rest, what is its angular speed in rev/s at the end of 2.55 s?
A block is attached to a light string that is wrapped around a cylindrical spool. A)...
A block is attached to a light string that is wrapped around a cylindrical spool. A) the spool consists of a uniform solid disk of radius r= 0.500m and a rim along the outside edge of the disk at a radius of r = 0.500m. The mass of the solid disk is mdisk= 4.00 kg and the mass of the rim is also mrm= 4.00 kg. What is the moment of inertia of the entire spool? B) the block is...
A cockroach of mass m lies on the rim of a uniform disk of mass 4.00...
A cockroach of mass m lies on the rim of a uniform disk of mass 4.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.230 rad/s. Then the cockroach walks half way to the center of the disk. What then is the angular velocity of the cockroach-disk system? What is the ratio K/K0 of the new kinetic energy of the system to its initial kinetic...
A string is wrapped around a pulley with a radius of 2.0 cm and no appreciable...
A string is wrapped around a pulley with a radius of 2.0 cm and no appreciable friction in its axle. The pulley is initially not turning. A constant force of 50 N is applied to the string, which does not slip, causing the pulley to rotate and the string to unwind. If the string unwinds 1.2 m in 4.9 s, what is the moment of inertia of the pulley?
In the figure, a very light rope is wrapped around a wheel of radius R =...
In the figure, a very light rope is wrapped around a wheel of radius R = 1.2 meters and does not slip. The wheel is mounted with frictionless bearings on an axle through its center. A block of mass 14 kg is suspended from the end of the rope. When the system is released from rest it is observed that the block descends 9 meters in 2.6 seconds. What is the moment of inertia of the wheel (give answer to...
String is wrapped around an object of mass M = 0.3 kg and moment of inertia...
String is wrapped around an object of mass M = 0.3 kg and moment of inertia I = 0.01 kg·m2. You pull the string with your hand straight up with some constant force F such that the center of the object does not move up or down, but the object spins faster and faster (see the figure). This is like a yo-yo; nothing but the vertical string touches the object. When your hand is a height y0 = 0.26 m...
A uniform disk of mass M is rotating freely about its center On its rim lie...
A uniform disk of mass M is rotating freely about its center On its rim lie a cockroach of mass M/3 Initially the cockroach and disk rotate together with an angular velocity of 2.5 rad/s Then the cockroach walks halfway to the center of the disk. What is the new angular velocity of the system?
A thin uniform disk of radius r and mass m is spinning about its center at...
A thin uniform disk of radius r and mass m is spinning about its center at angular speed ω0. The disk is placed flat on a horizontal surface. The coefficient of kinetic friction between the disk and the surface is μ and constant for the entire area of contact. a) Find the frictional torque on the disk. (Hint: Divide the disk into many concentric rings.) b) How long will it take the disk to come to rest?
Consider a thin uniform disk of mass M and radius R. A mass m is located...
Consider a thin uniform disk of mass M and radius R. A mass m is located along the axis of the disk at a distance z from the center of the disk. The gravitational force on the mass m (in terms of m, M, R, G, and z) is
A thin, uniform disk with mass M and radius R is pivoted about a fixed point...
A thin, uniform disk with mass M and radius R is pivoted about a fixed point a distance x from the center of mass. The disk rotates around the fixed point, with the axis of rotation perpendicular to the plane of the disk. What is the period as a function of x, M, R, and acceleration due to gravity (g), and what is the distance x that gives the smallest period?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT