In: Statistics and Probability
The data below id from 128 recent sales in Mid City. For each sale, it shows the neighborhood (1, 2, or 3) of the house, # of offers made on the house, sq. footage, whether house is primarily made of brick, # of bathrooms, # of bedrooms, & selling price. Â Neghborhoods 1 & 2 are traditional, 3 is newer/more prestigious. Use regression to estimate & interpret the pricing structure of houses in Mid City.
Q4. Based on the regression of SqFt on Price, each 1 SqFt increase raises the Price by ______.
|
-20182.3 |
||
|
0.3 |
||
|
7.4 |
||
|
140.5 |
| Home | Nbhd | Offers | Sq Ft | Brick | Bedrooms | Bathrooms | Price |
| 1 | 2 | 2 | 1790 | No | 2 | 2 | 228600 |
| 2 | 2 | 3 | 2030 | No | 4 | 2 | 228400 |
| 3 | 2 | 1 | 1740 | No | 3 | 2 | 229600 |
| 4 | 2 | 3 | 1980 | No | 3 | 2 | 189400 |
| 5 | 2 | 3 | 2130 | No | 3 | 3 | 239600 |
| 6 | 1 | 2 | 1780 | No | 3 | 2 | 229200 |
| 7 | 3 | 3 | 1830 | Yes | 3 | 3 | 303200 |
| 8 | 3 | 2 | 2160 | No | 4 | 2 | 301400 |
| 9 | 2 | 3 | 2110 | No | 4 | 2 | 238400 |
| 10 | 2 | 3 | 1730 | No | 3 | 3 | 208000 |
| 11 | 2 | 3 | 2030 | Yes | 3 | 2 | 265000 |
| 12 | 2 | 2 | 1870 | Yes | 2 | 2 | 246000 |
| 13 | 1 | 4 | 1910 | No | 3 | 2 | 205200 |
| 14 | 1 | 5 | 2150 | Yes | 3 | 3 | 252600 |
| 15 | 3 | 4 | 2590 | No | 4 | 3 | 353600 |
| 16 | 3 | 1 | 1780 | No | 4 | 2 | 291600 |
| 17 | 2 | 4 | 2190 | Yes | 3 | 3 | 294200 |
| 18 | 1 | 4 | 1990 | No | 3 | 3 | 167200 |
| 19 | 2 | 1 | 1700 | Yes | 2 | 2 | 222800 |
| 20 | 3 | 2 | 1920 | Yes | 3 | 3 | 334400 |
| 21 | 2 | 3 | 1790 | No | 3 | 2 | 232400 |
| 22 | 1 | 4 | 2000 | No | 3 | 2 | 227600 |
| 23 | 1 | 3 | 1690 | No | 3 | 2 | 183400 |
| 24 | 1 | 3 | 1820 | Yes | 3 | 2 | 212200 |
| 25 | 2 | 2 | 2210 | Yes | 4 | 3 | 312800 |
| 26 | 1 | 3 | 2290 | No | 4 | 3 | 298600 |
| 27 | 3 | 3 | 2000 | No | 4 | 2 | 274000 |
| 28 | 2 | 2 | 1700 | No | 3 | 2 | 198600 |
| 29 | 1 | 3 | 1600 | No | 2 | 2 | 138200 |
| 30 | 3 | 1 | 2040 | Yes | 4 | 3 | 376000 |
| 31 | 3 | 3 | 2250 | Yes | 4 | 3 | 364000 |
| 32 | 1 | 2 | 1930 | Yes | 2 | 2 | 224600 |
| 33 | 2 | 3 | 2250 | Yes | 3 | 3 | 270000 |
| 34 | 2 | 4 | 2280 | Yes | 5 | 3 | 279200 |
| 35 | 1 | 3 | 2000 | No | 2 | 2 | 235600 |
| 36 | 1 | 3 | 2080 | No | 3 | 3 | 234200 |
| 37 | 1 | 2 | 1880 | No | 2 | 2 | 235000 |
| 38 | 3 | 4 | 2420 | No | 4 | 3 | 294000 |
| 39 | 3 | 1 | 1720 | No | 3 | 2 | 262600 |
| 40 | 1 | 2 | 1740 | No | 3 | 2 | 216400 |
| 41 | 2 | 1 | 1560 | No | 2 | 2 | 213200 |
| 42 | 3 | 2 | 1840 | No | 4 | 3 | 267200 |
| 43 | 2 | 3 | 1990 | No | 2 | 2 | 211200 |
| 44 | 2 | 1 | 1920 | Yes | 3 | 2 | 308000 |
| 45 | 3 | 2 | 1940 | Yes | 3 | 3 | 333000 |
| 46 | 2 | 3 | 1810 | No | 3 | 2 | 206400 |
| 47 | 1 | 2 | 1990 | No | 2 | 3 | 259600 |
| 48 | 1 | 6 | 2050 | No | 3 | 2 | 180600 |
| 49 | 2 | 2 | 1980 | No | 2 | 2 | 231800 |
| 50 | 1 | 3 | 1700 | Yes | 3 | 2 | 215000 |
| 51 | 2 | 3 | 2100 | Yes | 3 | 2 | 302200 |
| 52 | 1 | 3 | 1860 | No | 2 | 2 | 182200 |
| 53 | 1 | 4 | 2150 | No | 2 | 3 | 234800 |
| 54 | 1 | 3 | 2100 | No | 3 | 2 | 261600 |
| 55 | 1 | 3 | 1650 | No | 3 | 2 | 162600 |
| 56 | 2 | 2 | 1720 | Yes | 2 | 2 | 251400 |
| 57 | 2 | 3 | 2190 | Yes | 3 | 2 | 281800 |
| 58 | 3 | 3 | 2240 | No | 4 | 3 | 304600 |
| 59 | 3 | 1 | 1840 | No | 3 | 3 | 276200 |
| 60 | 3 | 1 | 2090 | No | 4 | 2 | 310800 |
| 61 | 3 | 1 | 2200 | No | 3 | 3 | 361800 |
| 62 | 1 | 2 | 1610 | No | 2 | 2 | 201800 |
| 63 | 3 | 2 | 2220 | No | 4 | 3 | 322600 |
| 64 | 2 | 2 | 1910 | No | 2 | 3 | 241000 |
| 65 | 3 | 2 | 1860 | No | 3 | 2 | 260600 |
| 66 | 1 | 1 | 1450 | Yes | 2 | 2 | 222200 |
| 67 | 1 | 4 | 2210 | No | 3 | 3 | 252400 |
| 68 | 2 | 3 | 2040 | No | 4 | 3 | 303800 |
| 69 | 1 | 4 | 2140 | No | 3 | 2 | 187200 |
| 70 | 3 | 3 | 2080 | No | 4 | 3 | 331200 |
| 71 | 3 | 3 | 1950 | Yes | 3 | 3 | 333400 |
| 72 | 3 | 1 | 2160 | No | 4 | 2 | 315200 |
| 73 | 1 | 3 | 1650 | No | 3 | 2 | 214600 |
| 74 | 2 | 2 | 2040 | No | 3 | 3 | 251400 |
| 75 | 3 | 3 | 2140 | No | 3 | 3 | 288400 |
| 76 | 1 | 2 | 1900 | No | 2 | 2 | 213800 |
| 77 | 3 | 2 | 1930 | No | 3 | 2 | 259600 |
| 78 | 3 | 3 | 2280 | Yes | 4 | 3 | 353000 |
| 79 | 1 | 3 | 2130 | No | 3 | 2 | 242600 |
| 80 | 3 | 1 | 1780 | No | 4 | 2 | 287200 |
| 81 | 2 | 4 | 2190 | Yes | 3 | 3 | 286800 |
| 82 | 3 | 2 | 2140 | Yes | 4 | 3 | 368600 |
| 83 | 3 | 1 | 2050 | Yes | 2 | 2 | 329600 |
| 84 | 2 | 2 | 2410 | No | 3 | 3 | 295400 |
| 85 | 1 | 3 | 1520 | No | 2 | 2 | 181000 |
| 86 | 3 | 2 | 2250 | Yes | 4 | 3 | 376600 |
| 87 | 1 | 4 | 1900 | No | 4 | 2 | 205400 |
| 88 | 3 | 1 | 1880 | Yes | 3 | 3 | 345000 |
| 89 | 1 | 2 | 1930 | No | 3 | 3 | 255400 |
| 90 | 1 | 4 | 2010 | No | 2 | 2 | 195600 |
| 91 | 3 | 2 | 1920 | No | 4 | 2 | 286200 |
| 92 | 2 | 2 | 2150 | No | 3 | 2 | 233000 |
| 93 | 3 | 2 | 2110 | No | 3 | 2 | 285200 |
| 94 | 2 | 2 | 2080 | No | 3 | 3 | 314200 |
| 95 | 3 | 3 | 2150 | Yes | 4 | 3 | 321200 |
| 96 | 3 | 1 | 1970 | Yes | 2 | 2 | 305000 |
| 97 | 2 | 3 | 2440 | No | 3 | 3 | 266600 |
| 98 | 2 | 1 | 2000 | Yes | 2 | 2 | 253600 |
| 99 | 3 | 1 | 2060 | No | 3 | 2 | 291000 |
| 100 | 3 | 2 | 2080 | Yes | 3 | 3 | 342000 |
| 101 | 1 | 5 | 2010 | No | 3 | 2 | 206400 |
| 102 | 2 | 5 | 2260 | No | 3 | 3 | 246200 |
| 103 | 2 | 4 | 2410 | No | 3 | 3 | 273600 |
| 104 | 3 | 3 | 2440 | Yes | 4 | 3 | 422400 |
| 105 | 2 | 4 | 1910 | No | 3 | 2 | 164600 |
| 106 | 3 | 4 | 2530 | No | 4 | 3 | 293800 |
| 107 | 1 | 4 | 2130 | No | 3 | 2 | 217000 |
| 108 | 2 | 1 | 1890 | Yes | 3 | 2 | 268000 |
| 109 | 2 | 3 | 1990 | Yes | 3 | 3 | 234000 |
| 110 | 2 | 3 | 2110 | No | 3 | 2 | 217400 |
| 111 | 1 | 1 | 1710 | No | 2 | 2 | 223200 |
| 112 | 1 | 2 | 1740 | No | 2 | 2 | 229800 |
| 113 | 2 | 2 | 1940 | Yes | 2 | 2 | 247200 |
| 114 | 1 | 3 | 2000 | Yes | 3 | 2 | 231400 |
| 115 | 2 | 2 | 2010 | No | 4 | 3 | 249000 |
| 116 | 1 | 3 | 1900 | No | 3 | 3 | 205000 |
| 117 | 3 | 1 | 2290 | Yes | 5 | 4 | 399000 |
| 118 | 1 | 2 | 1920 | No | 3 | 2 | 235600 |
| 119 | 1 | 3 | 1950 | Yes | 3 | 2 | 300400 |
| 120 | 1 | 4 | 1920 | No | 2 | 2 | 219400 |
| 121 | 1 | 3 | 1930 | No | 2 | 3 | 220800 |
| 122 | 2 | 3 | 1930 | No | 3 | 3 | 211200 |
| 123 | 2 | 1 | 2060 | Yes | 2 | 2 | 289600 |
| 124 | 2 | 3 | 1900 | Yes | 3 | 3 | 239400 |
| 125 | 2 | 3 | 2160 | Yes | 4 | 3 | 295800 |
| 126 | 1 | 2 | 2070 | No | 2 | 2 | 227000 |
| 127 | 3 | 1 | 2020 | No | 3 | 3 | 299800 |
| 128 | 1 | 4 | 2250 | No | 3 | 3 | 249200 |
Solution: We can use the excel regression data analysis tool for running the regression of Price on Sq FT to find the coefficient of the slope.
Data> Data Analysis> Regression>
input Y range = Price Data
input x range = Sq Ft data
The excel output is given below:
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.5530 | |||||
| R Square | 0.3058 | |||||
| Adjusted R Square | 0.3003 | |||||
| Standard Error | 44951.0673 | |||||
| Observations | 128 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 112145452218.5470 | 112145452218.5470 | 55.5011 | 0.0000 | |
| Residual | 126 | 254595404968.9530 | 2020598452.1346 | |||
| Total | 127 | 366740857187.5000 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | -20182.260 | 37932.208 | -0.532 | 0.596 | -95248.983 | 54884.464 |
| Sq Ft | 140.5 | 18.853 | 7.450 | 0.000 | 103.143 | 177.762 |
Q4. Based on the regression of SqFt on Price, each 1 SqFt increase raises the Price by 140.5.
Answer: 140.5