In: Computer Science
Prove the validity using laws of propositional logic and rules of inference:
∀x(P(x) → (Q(x) ∧ S(x)))
∃x(P(x) ∧ R(x))
− − − − − − − − − − − − −
∴ ∃x(R(x) ∧ S(x))
given
∀x(P(x) → (Q(x) ∧ S(x)))
∃x(P(x) ∧ R(x))
| Step | Reason | 
| 1. ∃x(P(x) ∧ R(x)) | Hypothesis | 
| 2. P(a) ^ R(a) | Existencial instantiation from (1) | 
| 3. P(a) | Simplification from (2) | 
| 4. ∀x(P(x) → (Q(x) ∧ S(x))) | Hypothesis | 
| 5. P(a) -> (Q(a) ^ S(a)) | Universal instantiation from (4) | 
| 6. (Q(a) ^ S(a)) | Modus ponens from (3) and (5) | 
| 7. R(a) | Simplification from (2) | 
| 8. R(a) ^ Q(a) ^ S(a) | Conjunction from (6) and (7) | 
| 9. ∃x(R(x) ∧ S(x)) | Existential generalization from(8) |