Question

In: Computer Science

This class will model a class variable to hold a mathematical function of up to 10 terms.




// Complete the implementation of the following class.

// This class will model a class variable to hold a mathematical function of up to 10 terms.
// The function will have one independent variable.
// Terms that the function will model are:
// Monomials of the form: 5.3x^0.5
// Trigonometric terms sin(x), cos(x), tan(x) of the form: 1.2cos(3.0x)
//
public class Function { // PLEASE leave your class name as Function
   // CLASS VARIABLES
  
   // use any collection of variables as you see fit.
  
   // CONSTRUCTORS

   // Intialize Function to f(x)=0
   public Function() {
  
   }

   // Set Function to f(x)=c
   public Function(double c) {
  
   }

   // Set Function to f(x)=bx+c
   public Function(double b, double c) {
  
   }

   // Set Function to f(x)=ax^2+bx+c
   public Function(double a, double b, double c) {
  
   }

   // Set Function to f(x)=coeff*trigFunction(px)
   // - angle in radians
   // allow trigFunction to be "sin", "cos" or "tan"; set f(x)=0 for unknown trigFunctions.
   public Function(double coeff, String trigFunction, double p) {
  
   }
      
   // Add a polynomial term of the form: Cx^P. to the Function
   public void addTerm(double C, double P) {
      
   }
  
   // Add a trigonometric term of the form c*trigFunction(px)
   // - angle in radians
   // allow trigFunction to be "sin", "cos" or "tan";
   // make no additions to function for unknown trigFunctions and return false.
   public boolean addTerm(double c, String trigFunction, double p) {
      
   }

   // set Function to f(x)=0
   public void clear() {
      
   }
  
   // return the Function value at x
   public double evaluate(double x) {

   }
  
  
   // returns a Function that is the addition of this Function with f
   // (combine similar terms when possible)
   public Function add(Function f) {

   }
  
   // returns a Function that is the subtraction of this Function with f
   // (combine similar terms when possible)
   public Function subtract(Function f) {

   }

   // returns a String to represent the function
   // - combine similar terms
   // - show all coefficients to two places after decimal
   // - omit coefficients of 1.0000 except for negative exponents.
   // [There are NO specifications as to the order terms are displayed].
   //
   // Good Examples:
   // 4.00cos(x)-tan(3.00x)+7.00x^8.00-x^2.00+6.00+9.00x^(-1.00)
   // -4.50sin(x)+sin(2.5x)+3.25sin(2.0x)
   //  
   // Bad Examples:
   // 7.00x^8.00-1.00x^2.00+6.00+9.00x^-1.00
   // -4.50sin(x)+sin(x)+3.25sin(x)
   // 7.00x^4.00-x^4.00
   //
   // NOTE: String.format method will be useful/similar to System.out.printf method.
   //
   public String toString() {

   }


   // return function slope=rise/run using a deltaX of 0.0000000001 symmetrically about X
   // (i.e. let run be defined by: X-0.00000000005 to X+0.00000000005)
   public double slope(double X) {

   }

   // return the integral value of the function between x value interval, start to end
   // Use 10 million vertical, trapezoidal slices to determine integral value.
   // If start is greater than end, return the negative value of the integration end to start.
   public double integral(double start, double end) {

   }

   // Use any additional methods as you see fit.

} //End Class

Solutions

Expert Solution

import java.awt.*; //importing packages
import java.util.*;
public class Function { // PLEASE leave your class name as Function
   double[] co = new double[13];
   double[] degree = new double[13];
   //cindex, sinindex, tanindex, and cosindex all keep track of what index the last term filled
   //in the array was as they get filled.
   int cindex;
   double[] sinc = new double[11];
   double[] sind = new double[11];
   int sinindex;
   double[] cosc = new double[11];
   double[] cosd = new double[11];
   int cosindex;
   double[] tanc = new double[11];
   double[] tand = new double[11];
   int tanindex;
  
   // use any collection of variables as you see fit.
  
   // CONSTRUCTORS
   //Point p0 = new Point();
   // Intialize Function to f(x)=0
   public Function() {
      clear();     
   }

   // Set Function to f(x)=c
   //the next set of public functionsallow for the storage of the degree and coefficient
   //of each term and store it to the associated array.
   public Function(double c) {
      co[0]= c;
      degree[0] = 0;
      cindex = 1;
   }

   // Set Function to f(x)=bx+c
   public Function(double b, double c) {
       //y = b*x + c;
      co[0]= c;
      co[1]= b;
      degree[0] = 0;
      degree[1] = 1;
      cindex = 2;    
   }

   // Set Function to f(x)=ax^2+bx+c
   public Function(double a, double b, double c) {
       //y = a*(x*x) + b*x + c;
      co[0]= c;
      co[1]= b;
      co[2]= a;
      degree[0] = 0;
      degree[1] = 1;
      degree[2] = 2;
      cindex = 3;
   }

   // Set Function to f(x)=coeff*trigFunction(px)
   // - angle in radians
   // allow trigFunction to be "sin", "cos" or "tan"; set f(x)=0 for unknown trigFunctions.
   public Function(double coeff, String trigFunction, double p) {
       if(trigFunction.toLowerCase().equals("sin")){
         //y = coeff * Math.sin(p*x);
         sinc[0] = coeff;
         sind[0] = p;
         sinindex = 1;
      }else if(trigFunction.toLowerCase().equals("cos")){
         //y = coeff * Math.cos(p*x);
         if( p == 0){
            co[0]+= coeff;
         }else{
            cosc[0] = coeff;
            cosd[0] = p;
            cosindex = 1;
         }
      }else if(trigFunction.toLowerCase().equals("tan")){
         //y = coeff * Math.tan(p*x);
         tanc[0] = coeff;
         tand[0] = p;
         tanindex = 1;
      }else{
         clear();
      }
   }
      
   // Add a polynomial term of the form: Cx^P. to the Function
   public void addTerm(double C, double P) {
      boolean found = false;
      for(int i = 0; i < cindex; i++){
         if(P == degree[i]){
            co[i] += C;
            found = true;
         }
      }
      if(!found){
         co[cindex] = C;
         degree[cindex] = P;
         cindex++;
      }
   }
  
   // Add a trigonometric term of the form c*trigFunction(px)
   // - angle in radians
   // allow trigFunction to be "sin", "cos" or "tan";
   // make no additions to function for unknown trigFunctions and return false.
   public boolean addTerm(double c, String trigFunction, double p) {
       //the logic for this method is similar to the one above but I had to go through
      //sin, cos, and tan seperately sincethey have different arrays associated with them.
      if(trigFunction.toLowerCase().equals("sin")){
         boolean found = false;
         for(int i = 0; i < sinindex; i++){
            if(p == sind[i]){
               sinc[i] += c;
               found = true;
            }
         }
         if(!found){
            sinc[sinindex] = c;
            sind[sinindex] = p;
            sinindex++;
         }
         return true;
      }else if(trigFunction.toLowerCase().equals("cos")){
         //y += c * Math.cos(p*x);
         boolean found = false;
         for(int i = 0; i < cosindex; i++){
            if(p == 0){
               co[i] += c;
               found = true;
            }else if(p == cosd[i]){
               cosc[i] += c;
               found = true;
            }
         }
         if(!found){
            cosc[cosindex] = c;
            cosd[cosindex] = p;
            cosindex++;
         }
         return true;
      }else if(trigFunction.toLowerCase().equals("tan")){
         //y += c * Math.tan(p*x);
         boolean found = false;
         for(int i = 0; i < tanindex; i++){
            if(p == tand[i]){
               tanc[i] += c;
               found = true;
            }
         }
         if(!found){
            tanc[tanindex] = c;
            tand[tanindex] = p;
            tanindex++;
         }
         return true;
      }else{
         return false;   //if invalid string put into method, return false.
      }
   }

   // set Function to f(x)=0
   public void clear() {
       //this method clears all the arrays and initiallizes them to 0.
      Arrays.fill(co,0);
      Arrays.fill(degree,0);
      Arrays.fill(sinc,0);
      Arrays.fill(sind,0);
      Arrays.fill(cosc,0);
      Arrays.fill(cosd,0);
      Arrays.fill(tanc,0);
      Arrays.fill(tand,0);
      cindex = 0;
      sinindex = 0;
      cosindex = 0;
      tanindex = 0;     
   }
  
   // return the Function value at x
   public double evaluate(double x) {
      //this.x = x;
      //return y;
      //this evaluates each function given x according to the term's degree
      //and coefficient.
      //method goes through each array of each type of term in order to compute
      // a sum of all terms.
      double y = 0;
      for(int i = 0; i < cindex; i++){
         y += co[i]*Math.pow(x, degree[i]);
      }
      for(int i = 0; i < sinindex; i++){
         y += sinc[i]*Math.sin(sind[i]*x);
      }
      for(int i = 0; i < cosindex; i++){
         y += cosc[i]*Math.cos(cosd[i]*x);
      }
      for(int i = 0; i < tanindex; i++){
         y += tanc[i]*Math.tan(tand[i]*x);
      }
      return y;  
   }
  
  
   // returns a Function that is the addition of this Function with f
   // (combine similar terms when possible)
   public Function add(Function f) {
      Function sum = new Function();
      for (int i = 0; i < this.cindex; i++){
         sum.addTerm(this.co[i],this.degree[i]);
      }
      for (int i = 0; i < f.cindex; i++){
         sum.addTerm(f.co[i],f.degree[i]);
      }
      for (int i = 0; i < this.sinindex; i++){
         sum.addTerm(this.sinc[i],"sin",this.sind[i]);
      }
      for (int i = 0; i < f.sinindex; i++){
         sum.addTerm(f.sinc[i],"sin",f.sind[i]);
      }
      for (int i = 0; i < this.cosindex; i++){
         sum.addTerm(this.cosc[i],"cos",this.cosd[i]);
      }
      for (int i = 0; i < f.cosindex; i++){
         sum.addTerm(f.cosc[i],"cos",f.cosd[i]);
      }
      for (int i = 0; i < this.tanindex; i++){
         sum.addTerm(this.tanc[i],"tan",this.tand[i]);
      }
      for (int i = 0; i < f.tanindex; i++){
         sum.addTerm(f.tanc[i],"tan",f.tand[i]);
      }
      return sum;        
   }
  
   // returns a Function that is the subtraction of this Function with f
   // (combine similar terms when possible)
   //subract method uses similar logic to add method, with the coefficinets for f
   //being negative in order to subract.
   public Function subtract(Function f) {
      Function diff = new Function();
      for (int i = 0; i < this.cindex; i++){
         diff.addTerm(this.co[i],this.degree[i]);
      }
      for (int i = 0; i < f.cindex; i++){
         diff.addTerm(-1*f.co[i],f.degree[i]);
      }
      for (int i = 0; i < this.sinindex; i++){
         diff.addTerm(this.sinc[i],"sin",this.sind[i]);
      }
      for (int i = 0; i < f.sinindex; i++){
         diff.addTerm(-1*f.sinc[i],"sin",f.sind[i]);
      }
      for (int i = 0; i < this.cosindex; i++){
         diff.addTerm(this.cosc[i],"cos",this.cosd[i]);
      }
      for (int i = 0; i < f.cosindex; i++){
         diff.addTerm(-1*f.cosc[i],"cos",f.cosd[i]);
      }
      for (int i = 0; i < this.tanindex; i++){
         diff.addTerm(this.tanc[i],"tan",this.tand[i]);
      }
      for (int i = 0; i < f.tanindex; i++){
         diff.addTerm(-1*f.tanc[i],"tan",f.tand[i]);
      }
      return diff;
   }
   public String toString() {
      String function = "";
      boolean start = true;
      for(int i = 0; i < cindex; i++){
         boolean nothing = false;
         if(start){
            if(co[i] == 0){
               nothing = true;
            }else if(co[i] == -1){
               function += "-";
               start = false;
            }else if(co[i] == 1){
               start = false;
               if(degree[i] == 0){
                  function += String.format("%.02f", co[i]);
               }
            }else{
               function += String.format("%.02f", co[i]);
               start = false;
            }
         }else{
            if(co[i] == 0){
               nothing = true;
            }else if(co[i] == -1){
               function += "-";
            }else if(co[i] == 1){
               function += "+";
            }else if(co[i] > 0){
               function += "+" + String.format("%.02f", co[i]);
            }else{
               function += String.format("%.02f", co[i]);
            }
         }
         if(!nothing){
            if(degree[i] == 1){
               function += "x";
            }else if(degree[i] == 0){
               function = function;
            }else if(degree[i] > 0){
               function += "x^" + String.format("%.02f", degree[i]);
            }else{
               function += "x^(" + String.format("%.02f", degree[i]) + ")";
            }
         }
      }
      for(int i = 0; i < sinindex; i++){
         boolean nothing = false;
         if(sind[i] != 0){
            if(start){
               if(sinc[i] == 0){
                  nothing = true;
               }else if(sinc[i] == -1){
                  function += "-";
                  start = false;
               }else if(sinc[i] == 1){
                  start = false;
               }else{
                  function += String.format("%.02f", sinc[i]);
                  start = false;
               }
            }else{
               if(sinc[i] == 0){
                  nothing = true;
               }else if(sinc[i] == -1){
                  function += "-";
               }else if(sinc[i] == 1){
                  function += "+";
               }else if(sinc[i] > 0){
                  function += "+" + String.format("%.02f", sinc[i]);
               }else{
                  function += String.format("%.02f", sinc[i]);
               }
            }
         }
         if(!nothing){
            if(sind[i] == 1){
               function += "sin(x)";
            }else if(sind[i] == -1){
               function += "sin(-x)";
            }else if(sind[i] == 0){
               function = function;
            }else{
               function += "sin(" + String.format("%.02f", sind[i]) + "x)";
            }
         }
      }
      for(int i = 0; i < tanindex; i++){
         boolean nothing = false;
         if(tand[i] != 0){
            if(start){
               if(tanc[i] == 0){
                  nothing = true;
               }else if(tanc[i] == -1){
                  function += "-";
                  start = false;
               }else if(tanc[i] == 1){
                  start = false;
               }else{
                  function += String.format("%.02f", tanc[i]);
                  start = false;
               }
            }else{
               if(tanc[i] == 0){
                  nothing = true;
               }else if(tanc[i] == -1){
                  function += "-";
               }else if(tanc[i] == 1){
                  function += "+";
               }else if(tanc[i] > 0){
                  function += "+" + String.format("%.02f", tanc[i]);
               }else{
                  function += String.format("%.02f", tanc[i]);
               }
            }
         }
         if(!nothing){
            if(tand[i] == 1){
               function += "tan(x)";
            }else if(tand[i] == -1){
               function += "tan(-x)";
            }else if(tand[i] == 0){
               function = function;
            }else{
               function += "tan(" + String.format("%.02f", tand[i]) + "x)";
            }
         }
      }
      for(int i = 0; i < cosindex; i++){
         boolean nothing = false;
         if(start){
            if(cosc[i] == 0){
               nothing = true;
            }else if(cosc[i] == -1){
               function += "-";
               start = false;
            }else if(cosc[i] == 1){
               start = false;
            }else{
               function += String.format("%.02f", cosc[i]);
               start = false;          
            }
         }else{
            if(cosc[i] == 0){
               nothing = true;
            }else if(cosc[i] == -1){
               function += "-";
            }else if(cosc[i] == 1){
               function += "+";
            }else if(cosc[i] > 0){
               function += "+" + String.format("%.02f", cosc[i]);
            }else{
               function += String.format("%.02f", cosc[i]);
            }
         }
         if(!nothing){
            if(cosd[i] == 1){
               function += "cos(x)";
            }else if(cosd[i] == -1){
               function += "cos(-x)";
            }else if(cosd[i] == 0){
               function = function;
            }else{
               function += "cos(" + String.format("%.02f", cosd[i]) + "x)";
            }
         }
      }
      return function;
   }


   // return function slope=rise/run using a deltaX of 0.0000000001 symmetrically about X
   // (i.e. let run be defined by: X-0.00000000005 to X+0.00000000005)
   public double slope(double X) {
      double slope; //double slope is created which will be retruned
      double deltaX = 0.0000000001; //slope equation is (x2-x1)/(y2-y1).
      double yInitial = evaluate(X - 0.00000000005);
      double yFinal = evaluate(X + 0.00000000005);
      double deltaY = yFinal - yInitial;
      slope = deltaY/deltaX; // slope equation represented in code.
      return slope;
   }

   public double integral(double start, double end) {
      double h = start - end; // h is distance between x values.
      double area = 0.5 * evaluate(start) + 0.5 * evaluate(end);
      h = h/10000000;
      //if h is positive end is greater than start, otherwise it is the opposite.
      if(h >= 0){
         for(int i = 1; i < 10000000; i++){ //for loop set to go through each trapazoid and find height
                                            //then added to compounding sum through variable area.
            double point = h*i + start;
            area += evaluate(point);
         }
      }else{
         h = end - start;
         h = h/10000000;
         for(int i = 1; i < 10000000; i++){
            double point = h*i + end;
            area += evaluate(point);
         }
         area = -1 * area; // inputs negative area when h is negative, but allows for proper computation of value.
      }
      return area;
     
   }

   // Use any additional methods as you see fit.

} //End Class


Related Solutions

a) Write an function that finds the independent variable value at which a mathematical function is...
a) Write an function that finds the independent variable value at which a mathematical function is maximized over a specified interval. The function must accept a handle to a function, and evaluate that function at values ranging from x1 to x2 with an increment of dx. The value returned is the value of x at which the maximum value of f(x) occurs. Function syntax: xm = xmax(f,x1,x2,dx); As was the case in the previous problem, this function does not find...
The Richter Scale gives a mathematical model for the magnitude of an earthquake in terms of...
The Richter Scale gives a mathematical model for the magnitude of an earthquake in terms of the ratio of the amplitude of an earthquake wave (also known as the intensity of an earthquake) to the amplitude of the smallest detectable wave. If we denote the magnitude of the earthquake by R, the intensity (also known as the amplitude of the earthquake wave) of the earthquake by A, and the amplitude of the smallest detectable wave by S, then we can...
swift language declare a Swift array variable that can hold instances of any class type
swift language declare a Swift array variable that can hold instances of any class type
give example for a static mathematical model?
give example for a static mathematical model?
Java language Exercise #2: Design a Lotto class with one array instance variable to hold three...
Java language Exercise #2: Design a Lotto class with one array instance variable to hold three random integer values (from 1 to 9). Include a constructor that randomly populates the array for a lotto object. Also, include a method in the class to return the array. Use this class in the driver class (LottoTest.java) to simulate a simple lotto game in which the user chooses a number between 3 and 27. The user runs the lotto up to 5 times...
The ”Brusselator” is a mathematical model for a class of oscillating chemical reactions x'= 1−(b+ 1)x+a(x^2)y...
The ”Brusselator” is a mathematical model for a class of oscillating chemical reactions x'= 1−(b+ 1)x+a(x^2)y y′= bx−a(x^2)y where x,y ≥ 0 are the concentrations of the chemical and a and b are positive constants (a) Find the value of x and y at the equilibrium point. (b) Find values of a and b that give (i) a stable node (ii) an unstable node (iii) a stable spiral (iv) an unstable spiral (v) a saddle point. (Not all are possible)
Come up with a “mathematical proof” that the result that the pdf for the sum of...
Come up with a “mathematical proof” that the result that the pdf for the sum of a large number of random variables is a Gaussian.
Come up with a “mathematical proof” that the result that the pdf for the sum of...
Come up with a “mathematical proof” that the result that the pdf for the sum of a large number of random variables is a Gaussian.
(C++ programming) Assignment *Circle Class -Radius r (private) as an attribute variable -Member function -Get(): Function...
(C++ programming) Assignment *Circle Class -Radius r (private) as an attribute variable -Member function -Get(): Function that returns r value of property variable -Put(int d): A function that stores d in attribute variable r *Declare a one-dimensional array of type Circle and in each array element Read and store integers from standard input device *Declare the swap() function to swap two elements with each other *Write a program that sorts the elements of a one-dimensional array of circle type in...
Write and submit at a Matlab function that sums up a specified number of odd-power terms...
Write and submit at a Matlab function that sums up a specified number of odd-power terms from the Maclaurin series of sin(x)  using following function format function s = etaylor(x, n) % Sum of first n non-vanishing terms of Maclaurin series of sin(x) % For example, etaylor(0.5, 1) should be 0.5, and etaylor(0.5, 2) should be 23/48   
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT