Question

In: Chemistry

The pressure of a monatomic ideal gas doubles during an adiabatic compression. What is the ratio...

The pressure of a monatomic ideal gas doubles during an adiabatic compression. What is the ratio of the final volume to the initial volume (Vf/Vi)?

Solutions

Expert Solution


Related Solutions

A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The...
A monatomic ideal gas is at an initial pressure of 1.54 atm and 76.0 cm3. The gas undergoes an isochoric increase in pressure to 2.31 atm, then an isobaric expansion to 114 cm3. Pressure is reduced isochorically to the original pressure before an isobaric compression returns the gas to its initial values. For 1.95 moles of the gas, complete the following: a) Generate a sketch of the PV diagram, with values clearly represented. b) Find the heat absorbed and heat...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.40 atm ;...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.40 atm ; the volume of the gas changes from 3.20×10-2 m3 to 4.50×10−2 m3 . a. Calculate the initial temperature of the gas. b. Calculate the final temperature of the gas. c. Calculate the amount of work the gas does in expanding. d. Calculate the amount of heat added to the gas. e. Calculate the change in internal energy of the gas.
One mole of an ideal monatomic gas initially at 300 K and a pressure of 15.0...
One mole of an ideal monatomic gas initially at 300 K and a pressure of 15.0 atm expands to a final pressure of 1.00 atm. The expansion can occur via any one of four different paths: a. isothermal and reversible, b. isothermal and irreversible, c. adiabatic and reversible, and d. adiabatic and irreversible. In irreversible processes, the expansion occurs against an external pressure of 1.00 atm. For each case, calculate the values of q, w, DU, and DH. I need...
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of...
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of 2.92 × 105 Pa and a volume of 4.1 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 5.92 × 105 Pa while maintaining a constant volume. The volume of the gas...
An ideal monatomic gas originally at a pressure of 3x105 Pascals and 75 moles and volume...
An ideal monatomic gas originally at a pressure of 3x105 Pascals and 75 moles and volume 1.2 m3 & Ti is expanded isothermally to a volume of 3.5 m3 at which point it has pressure P1. It then experiences an isovolumic process to a lower pressure P2, T2. Finally, it is compressed adiabatically back to its original state and returns to its original pressure, temperature, and volume. Find: Ti , P1 , P2 , T2 ΔE1 of gas, ΔE2 of...
Refer to diagram 2. A flask contains 78.2 moles of a monatomic ideal gas at pressure...
Refer to diagram 2. A flask contains 78.2 moles of a monatomic ideal gas at pressure 8.33 atm and volume 49 liters. point A on the graph. Now, the gas undergoes a cycle of three steps: - First there is an isothermal expansion to pressure 1.74 atm (point B on the graph). - Next, there is an isochoric process in which the pressure is raised to P1 (point C on the graph). - Finally, there is an isobaric compression back...
A monatomic ideal gas expands from 2.00 m3 to 2.95 m3 at a constant pressure of...
A monatomic ideal gas expands from 2.00 m3 to 2.95 m3 at a constant pressure of 2.80 ✕ 105 Pa. Find the following. (a) Find the work done on the gas. J (b) Find the thermal energy Q transferred into the gas by heat. J (c) Find the change in the internal energy of the gas. J
25 pts) One mole of ideal, monatomic gas, initially at T = 250 K and pressure...
25 pts) One mole of ideal, monatomic gas, initially at T = 250 K and pressure 5.0 atm is: a) reversibly heated at constant pressure until its volume doubles b) reversibly heated at constant volume until its pressure doubles Determine w, q ,ΔU, ΔΗ , and ΔS for these two cases (20 pts). Can you calculate A and G for these two cases? Explain why. (5 pts)
An ideal Otto cycle has a compression ratio of 7. At the beginning of the compression...
An ideal Otto cycle has a compression ratio of 7. At the beginning of the compression process, air is at 98 kPa, 30oC and 766 kJ/kg of heat is transferred to air during the constant-volume heat addition process. Determine (a) the pressure (p3) and temperature (T3) at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency and (d) the mean effective pressure for the cycle. Use the IG model
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression...
An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT