Question

In: Physics

Refer to diagram 2. A flask contains 78.2 moles of a monatomic ideal gas at pressure...

Refer to diagram 2.

A flask contains 78.2 moles of a monatomic ideal gas at pressure 8.33 atm and volume 49 liters. point A on the graph. Now, the gas undergoes a cycle of three steps:

- First there is an isothermal expansion to pressure 1.74 atm (point B on the graph).

- Next, there is an isochoric process in which the pressure is raised to P1 (point C on the graph).

- Finally, there is an isobaric compression back to the original state (point A on the graph).

Find the total work done, in kJ, over the entire cycle (from A back to A).

A positive value means work was done by the gas; a negative value means work is done on the gas. Why is this a poor sort of engine?

Solutions

Expert Solution

Answer :

In question value of P1 is not given but i solved it so i am uploading the answer please put the value of P1 in th equation.


Related Solutions

A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of...
A piston contains 620 moles of an ideal monatomic gas that initally has a pressure of 2.92 × 105 Pa and a volume of 4.1 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 5.92 × 105 Pa while maintaining a constant volume. The volume of the gas...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.40 atm ;...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.40 atm ; the volume of the gas changes from 3.20×10-2 m3 to 4.50×10−2 m3 . a. Calculate the initial temperature of the gas. b. Calculate the final temperature of the gas. c. Calculate the amount of work the gas does in expanding. d. Calculate the amount of heat added to the gas. e. Calculate the change in internal energy of the gas.
An ideal monatomic gas originally at a pressure of 3x105 Pascals and 75 moles and volume...
An ideal monatomic gas originally at a pressure of 3x105 Pascals and 75 moles and volume 1.2 m3 & Ti is expanded isothermally to a volume of 3.5 m3 at which point it has pressure P1. It then experiences an isovolumic process to a lower pressure P2, T2. Finally, it is compressed adiabatically back to its original state and returns to its original pressure, temperature, and volume. Find: Ti , P1 , P2 , T2 ΔE1 of gas, ΔE2 of...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.10 atm ;...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.10 atm ; the volume of the gas changes from 3.30×10−2 m3 to 4.50×10−2 m3 . a) Calculate the initial temperature of the gas. b) Calculate the final temperature of the gas. c) Calculate the amount of work the gas does in expanding. d) Calculate the amount of heat added to the gas. e) Calculate the change in internal energy of the gas
Please include detailed work for answers A piston contains 770 moles of an ideal monatomic gas...
Please include detailed work for answers A piston contains 770 moles of an ideal monatomic gas that initally has a pressure of 1.23 × 105 Pa and a volume of 4.2 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. The pressure of the gas is increased to 4.23 × 105 Pa while maintaining a constant...
A flask holds 2.68 kg of a monatomic ideal gas (mass number 625). If the gas...
A flask holds 2.68 kg of a monatomic ideal gas (mass number 625). If the gas changes temperature isobarically (constant pressure) from 800o C to 410o C, find the total heat added to the gas, in kJ. A positive answer means heat is added; a negative answer means heat was removed. A flask holds 7.46 kg of a diatomic ideal gas (mass number of the gas 937). If the gas changes temperature isobarically (at constant pressure) from 319o C to...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded...
If 6.00 moles of a monatomic ideal gas at a temperature of 260 K are expanded isothermally from a volume of 1.07 L to a volume of 4.61 L . Calculate the work done by the gas. Calculate the heat flow into or out of the gas. If the number of moles is doubled, by what factors do your answers to parts A and B change?
Suppose that 132 moles of a monatomic ideal gas is initially contained in a piston with...
Suppose that 132 moles of a monatomic ideal gas is initially contained in a piston with a volume of 0.94 m3at a temperature of 348 K. The piston is connected to a hot reservoir with a temperature of 1064 K and a cold reservoir with a temperature of 348 K. The gas undergoes a quasi-static Stirling cycle with the following steps: The temperature of the gas is increased to 1064 K while maintaining a constant volume. The volume of the...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature...
two moles of a monatomic ideal gas are compressed in a cylinder at a constant temperature of 85 c until the original pressure has tripled? a)what is the work done on the gas? b)How much heat is transfered out of the gas? A monatomic ideal gas in a cylinder is held at a constant temperature 230kpa and is cooled and compressed from 1.7 to 1.2 a) what is the internal energy of the gas? b)How much heat is transferred out...
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 133...
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 133 ∘C. The gas expands and, in the process, absorbs an amount of heat equal to 1300 J and does an amount of work equal to 2200 J Use R = 8.3145 J/(mol⋅K) for the ideal gas constant.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT