Question

In: Statistics and Probability

SEX   AGE   FOOT LENGTH   SHOE PRINT   SHOE SIZE   HEIGHT M   67   27.8   31.3   11.0   180.3 M  ...

SEX   AGE   FOOT LENGTH   SHOE PRINT   SHOE SIZE   HEIGHT
M   67   27.8   31.3   11.0   180.3
M   47   25.7   29.7   9.0   175.3
M   41   26.7   31.3   11.0   184.8
M   42   25.9   31.8   10.0   177.8
M   48   26.4   31.4   10.0   182.3
M   34   29.2   31.9   13.0   185.4
M   26   26.8   31.8   11.0   180.3
M   29   28.1   31.0   10.5   175.3
M   60   25.4   29.7   9.5   177.8
M   48   27.9   31.4   11.0   185.4
M   30   27.5   31.4   11.0   190.5
M   43   28.8   31.6   12.0   195.0
M   54   26.7   31.8   10.0   175.3
M   31   26.7   32.4   10.5   180.3
M   42   25.1   27.6   9.0   172.7
M   21   28.7   31.8   12.5   182.9
M   59   29.2   31.3   11.0   189.2
M   58   27.9   31.3   11.5   185.4
M   42   28.6   34.5   14.0   193.7
F   47   23.2   24.8   7.0   165.1
F   19   24.3   28.6   9.0   166.4
F   20   26.0   25.4   10.0   177.8
F   27   23.8   26.7   8.0   167.6
F   19   25.1   26.7   9.0   168.3
F   21   25.4   27.9   8.5   165.7
F   32   21.9   27.9   8.0   165.1
F   19   26.2   28.9   11.0   165.1
F   27   23.8   27.9   8.0   165.1
F   18   22.2   25.9   9.5   152.4
F   26   24.6   25.4   8.5   162.6
F   36   24.6   28.1   9.0   179.1
F   28   23.7   27.6   9.0   175.9
F   29   25.6   26.5   8.5   166.4
F   58   24.1   26.5   7.0   167.6
F   30   23.8   28.4   9.0   162.6
F   23   23.3   26.5   8.0   167.6
F   26   23.5   26.0   8.0   165.1
F   47   25.1   27.0   10.0   172.7
F   36   24.1   25.1   7.5   157.5
F   19   23.8   27.9   10.0   167.6

1.What is the value of the test statistic for the test of correlation?

2.What proportion of the variation in shoe sizes is explained by height?

3.What is the value of the sample correlation coefficient, written to three decimal places?

4.My cousin is 16 centimeters shorter than me. Based on the model, predict how many shoe sizes smaller his shoes are.

5.Predict what the average shoe size should be for someone that is 6 feet tall according to the model. Report your prediction out to one decimal place. (Hint - heights in the data set are in centimeters, so they are also in cm for the model!)

Solutions

Expert Solution

1.What is the value of the test statistic for the test of correlation?

t = 7.663

2.What proportion of the variation in shoe sizes is explained by height?

0.607

3.What is the value of the sample correlation coefficient, written to three decimal places?

r = 0.779

4.My cousin is 16 centimeters shorter than me. Based on the model, predict how many shoe sizes smaller his shoes are.

y = -11.9462 + 0.1245*x

Put x = 16

y = -11.9462 + 0.1245*16

y = -9.9542 = 10 shoe sizes smaller

5.Predict what the average shoe size should be for someone that is 6 feet tall according to the model. Report your prediction out to one decimal place. (Hint - heights in the data set are in centimeters, so they are also in cm for the model!)

y = -11.9462 + 0.1245*x

Put x = 182.88

y = -11.9462 + 0.1245*182.88 = 10.82236

0.607
r   0.779
Std. Error   1.022
n   40
k   1
Dep. Var. SHOE SIZE
ANOVA table
Source SS   df   MS F p-value
Regression 61.3206 1   61.3206 58.73 3.17E-09
Residual 39.6794 38   1.0442
Total 101.0000 39  
Regression output confidence interval
variables coefficients std. error    t (df=38) p-value 95% lower 95% upper
Intercept -11.9462
HEIGHT 0.1245 0.0162 7.663 3.17E-09 0.0916 0.1573

Please give me a thumbs-up if this helps you out. Thank you!


Related Solutions

Given the following relationship: Shoe Size | Height (inches) 7.5 | 66 8 | 67 8...
Given the following relationship: Shoe Size | Height (inches) 7.5 | 66 8 | 67 8 | 68 10 | 71 10.5 | 70 11 |    73 a) Letting the variable x represent shoe size and y represent height, determine the least squares regression line and correlation coefficent. b) Based on the correlation coefficient calculated above, can the least squares regression line be confidently used as a predictor of height? Why or Why not? SHow the work detailed. Thank you
Given the following relationship: Shoe Size | Height (inches) 7.5 66 8 67 8 68 10...
Given the following relationship: Shoe Size | Height (inches) 7.5 66 8 67 8 68 10 71 10.5 70 11 73 a) Letting the variable x represent shoe size and y represent height, determine the least squares regression line and correlation coefficent. b) Based on the correlation coefficient calculated above, can the least squares regression line be confidently used as a predictor of height? Why or Why not? Please help show work.
Data Set Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36...
Data Set Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36 18 66 140 31 9 30 125 69 130 31 9 25 151 63 125 36 7 25 11 68 155 24 8 31 151 62 129 42 6 32 214 63 173 30 8 34 138 60 102 26 6 25 67 66 180 33 8 30 285 66 130 31 9 30 50 63 125 32 8 26 32 68 145 33...
Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36 18 66...
Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36 18 66 140 31 9 30 125 69 130 31 9 25 151 63 125 36 7 25 11 68 155 24 8 31 151 62 129 42 6 32 214 63 173 30 8 34 138 60 102 26 6 25 67 66 180 33 8 30 285 66 130 31 9 30 50 63 125 32 8 26 32 68 145 33 10 28...
Here are the height and shoe-size information from our class survey at the beginning of the...
Here are the height and shoe-size information from our class survey at the beginning of the quarter. Height (in inches) Shoe Size (US Womens) 66 10.5 64 7 67 7.5 65 7.5 64 9 68 7.5 74 14.5 67 9 72 11.5 66 7.5 64 7.5 65 8.5 72 13.5 63 8 66 8 60 8 67 7.5 I converted all our measurements so they were in the same units.   Use technology to analyze these data as in Chapters 6,7,...
Use the following data to calculate and record the correlation coefficient, r. Height (in.) Foot Length...
Use the following data to calculate and record the correlation coefficient, r. Height (in.) Foot Length (in.) 63 10 66 12 62.5 9.4 74 10.5 70 11.3 72 11.3 71 12.5 64 9.1 72 10.9 71 10 74 12.1 67 10 69 11.1 65 9.6 62.8 9 72 11.3 68.8 10.5 69 10 65.3 9 53 7 71 10.3 74 11.7 70 10 72 10.6 72.5 12.8 67 9.5 69 10.9 74 11.6 68 9 70.1 10.1 62 8 77...
Enter the Shoe Size and Height data from the In class data Excel file (use the...
Enter the Shoe Size and Height data from the In class data Excel file (use the excel in class data lab file loaded into the files section of Canvas) into the week 7 Regression Excel sheet. Create a scatter plot for the data, store and graph the regression equation, and note the r2 and r value. Looking at the graph and the r, and r^2 value, do you feel that shoe size is a good predictor for height? Explain your...
A boxcar of length 10.1 m and height 2.4 m is at rest on frictionless rails....
A boxcar of length 10.1 m and height 2.4 m is at rest on frictionless rails. Inside the boxcar (whose mass when empty is 3600 kg) a tank containing 1700 kg of water is located at the left end. The tank is 1.0 m long and 2.4 m tall. At some point the walls of the tank start to leak, and the water fills the floor of the boxcar uniformly. Assume that all the water stays in the boxcar. A....
Clinical Note Age     58             Sex           M        Date Chief com
Clinical Note Age     58             Sex           M        Date Chief complaint "Pain on my chest" on and off for the past six months. History of present illness Mr. Solomon is a 58 year old insurance broker who presents tonight in the office following an episode of "chest pain" that he experienced earlier in the day during a golf game. Although he minimizes the severity of the pain and attributes it to being "out of shape," his wife insisted that he see a physician because he...
3-2-1kathleen wants to know whether height and shoe size are realted in women. She stops and...
3-2-1kathleen wants to know whether height and shoe size are realted in women. She stops and surveys some female students on the quad and finds the following information: Height Shoe Size 64 6.5 60 7 70 8.5 69 9.5 66 7 67 8 70 8.5 66 8 68 8.5 1)what is the covariance of there data? 2)What is the coefficient of correlation of these data? 3)What is the relationship between the two variables? a. Can't be determined b. Weakly positive...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT