Question

In: Math

Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36 18 66...

Height Weight Age Shoe Size Waist Size Pocket Change
64 180 39 7 36 18
66 140 31 9 30 125
69 130 31 9 25 151
63 125 36 7 25 11
68 155 24 8 31 151
62 129 42 6 32 214
63 173 30 8 34 138
60 102 26 6 25 67
66 180 33 8 30 285
66 130 31 9 30 50
63 125 32 8 26 32
68 145 33 10 28 118
75 235 44 12 40 60
68 138 43 8 27 50
65 165 55 9 30 22
64 140 24 7 31 95
78 240 40 9 38 109
71 163 28 7 32 14
68 195 24 10 36 5
66 122 33 9 26 170
53 115 25 7 25 36
71 210 30 10 36 50
78 108 23 7 22 75
69 126 23 8 24 175
77 215 24 12 36 41
68 125 23 8 30 36
62 105 50 6 24 235
69 126 42 9 27 130
55 140 42 8 29 14
67 145 30 8 30 50

1. weight vs. age α ̇=.01/2

Step 1:                       Ho:    __   _   ___

                                   Ha:    __   _ ___

Step 2:                       Alpha level = _____

Step 3:           Sampling distribution is df = _____

Step 4:           Decision Rule: I will reject the Ho if the |_robs_| value falls at or beyond
                          the |_rcrit_| of ____, otherwise I will fail to reject

Step 5:           Calculation: \_robs_/ = _____

Step 6:           Summary: Since the |_robs_| of ____     _____________ the |_rcrit_| of

                       _____, I therefore reject/fail to reject (choose one) the Ho.

Step 7:           Conclusion: Since _______ occurred, I conclude ___________________________________________________________________.

2. height vs. shoe size α ̇=.02/2

Step 1:                       Ho:    __   _   ___
                                   Ha:    __   _ ___

Step 2:                       Alpha level = _____

Step 3:           Sampling distribution is df = _____

Step 4:           Decision Rule: I will reject the Ho if the |_robs_| value falls at or beyond
                          the |_rcrit_| of ____, otherwise I will fail to reject

Step 5:           Calculation: \_robs_/ = _____

Step 6:           Summary: Since the |_robs_| of ____     _____________ the |_rcrit_| of

                       _____, I therefore reject/fail to reject (choose one) the Ho.

Step 7:           Conclusion: Since _______ occurred, I conclude ___________________________________________________________________.

3.Explain the correlation coefficient of determination.

Solutions

Expert Solution

I have used R software

Enter the data in Excel - save it as comma delimited

The in R use the following syntax

> data=read.csv(file.choose(),header = TRUE) #to import data from excel   
> attach(data) #To attach the imported data in R

-------------------------------------------------------------------------------------------------------------------

(1)

Let be the population correlation

alpha level =0.01

I have used the test in R as follows

From the above

Sampling distribution is df =28

I will reject H0 if the observed value of the test statistic |robs| falls at or beyond the critical value rcrit,else i will accept .

The test statistic:

where r=sample correlation

n=sample size.

From the R output

r=0.110044 ,n=28

So,

|robs| = 0.5859

From t table

As

or,

We fail to reject H0

Acceptance of H0 occured we Can say that Population correaltion is zero,or no correlation between Weight and age

---------------------------------------------------------------------------------------------------------------------------------------------

(2)

Let be the population correlation

alpha level =0.02

I have used the test in R as follows

From the above

Sampling distribution is df =28

I will reject H0 if the observed value of the test statistic |robs| falls at or beyond the critical value rcrit,else i will accept .

The test statistic:

where r=sample correlation

n=sample size.

From the R output

r=0.5508678

n=28

|robs| = 3.4926

From the t table

Since

or

,i therefore reject the null hypothesis.

Since rejection occurred we can conclude that Height nad shoe size are correlated.

----------------------------------------------------------------------------------------------------------------------------

(3)

correlation coefficient of determination is square of correlation coefficient.It shows the % variation in dependent variable which is explained by all independent variables together.

It is a statisticsla measure of how close the data are to be fitted in a regression line.

---------------------------------------------------------------------------------------------------------------------------------------


Related Solutions

Data Set Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36...
Data Set Height Weight Age Shoe Size Waist Size Pocket Change 64 180 39 7 36 18 66 140 31 9 30 125 69 130 31 9 25 151 63 125 36 7 25 11 68 155 24 8 31 151 62 129 42 6 32 214 63 173 30 8 34 138 60 102 26 6 25 67 66 180 33 8 30 285 66 130 31 9 30 50 63 125 32 8 26 32 68 145 33...
Lynn, age 36, nonsmoker. Height = 64 in (162.6 cm), weight = 108 lb (49.1 kg),...
Lynn, age 36, nonsmoker. Height = 64 in (162.6 cm), weight = 108 lb (49.1 kg), BMI = 18.5 kg/m^2. Resting blood pressure = 142/86 mmHg. Total cholesterol = 174 mg/dl. Blood glucose is normal, but with insulin injections. She is Type 1 diabetic and was diagnosed at age 7. She teaches dance aerobic classes three times per week and walks about 45 minutes four times per week. Both of her parents are in good health. Identify all CVD risk...
Given the following relationship: Shoe Size | Height (inches) 7.5 | 66 8 | 67 8...
Given the following relationship: Shoe Size | Height (inches) 7.5 | 66 8 | 67 8 | 68 10 | 71 10.5 | 70 11 |    73 a) Letting the variable x represent shoe size and y represent height, determine the least squares regression line and correlation coefficent. b) Based on the correlation coefficient calculated above, can the least squares regression line be confidently used as a predictor of height? Why or Why not? SHow the work detailed. Thank you
Given the following relationship: Shoe Size | Height (inches) 7.5 66 8 67 8 68 10...
Given the following relationship: Shoe Size | Height (inches) 7.5 66 8 67 8 68 10 71 10.5 70 11 73 a) Letting the variable x represent shoe size and y represent height, determine the least squares regression line and correlation coefficent. b) Based on the correlation coefficient calculated above, can the least squares regression line be confidently used as a predictor of height? Why or Why not? Please help show work.
SEX   AGE   FOOT LENGTH   SHOE PRINT   SHOE SIZE   HEIGHT M   67   27.8   31.3   11.0   180.3 M  ...
SEX   AGE   FOOT LENGTH   SHOE PRINT   SHOE SIZE   HEIGHT M   67   27.8   31.3   11.0   180.3 M   47   25.7   29.7   9.0   175.3 M   41   26.7   31.3   11.0   184.8 M   42   25.9   31.8   10.0   177.8 M   48   26.4   31.4   10.0   182.3 M   34   29.2   31.9   13.0   185.4 M   26   26.8   31.8   11.0   180.3 M   29   28.1   31.0   10.5   175.3 M   60   25.4   29.7   9.5   177.8 M   48   27.9   31.4   11.0   185.4 M   30   27.5   31.4   11.0   190.5 M   43   28.8   31.6   12.0  ...
_ 18-22 23-35 36-49 50-64 65_and_over Several_times_a_day 21 18 9 2 1 About_once_a_day 27 39 13...
_ 18-22 23-35 36-49 50-64 65_and_over Several_times_a_day 21 18 9 2 1 About_once_a_day 27 39 13 3 2 3-5_times_per_week 31 44 31 6 3 1-2_times_per_week 30 70 34 15 5 Every_few_weeks 19 67 45 25 8 Less_Often 14 57 59 65 16 Never 5 15 44 68 21 How often do users of a certain social media post on the​ site? The accompanying table represents the frequency of posting for a sample of 932 respondents classified according to their age...
First Name Last Name Position Height(inch) Weight(lb) Age Nate Robinson G 69 180 29 Isaiah Thomas...
First Name Last Name Position Height(inch) Weight(lb) Age Nate Robinson G 69 180 29 Isaiah Thomas G 69 185 24 Phil Pressey G 71 175 22 Shane Larkin G 71 176 20 Ty Lawson G 71 195 25 John Lucas G 71 157 30 D.J. Augustin G 72 180 25 Kyle Lowry G 72 205 27 Sebastian Telfair G 72 175 28 Will Bynum G 72 185 30 Jameer Nelson G 72 190 31 Mickey McConnell G 72 189 24...
First Name Last Name Position Height(inch) Weight(lb) Age Nate Robinson G 69 180 29 Isaiah Thomas...
First Name Last Name Position Height(inch) Weight(lb) Age Nate Robinson G 69 180 29 Isaiah Thomas G 69 185 24 Phil Pressey G 71 175 22 Shane Larkin G 71 176 20 Ty Lawson G 71 195 25 John Lucas G 71 157 30 D.J. Augustin G 72 180 25 Kyle Lowry G 72 205 27 Sebastian Telfair G 72 175 28 Will Bynum G 72 185 30 Jameer Nelson G 72 190 31 Mickey McConnell G 72 189 24...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT