Question

In: Anatomy and Physiology

Can you explain Ligands, Receptors , how they work throughout the body and inside a cell...

Can you explain Ligands, Receptors , how they work throughout the body and inside a cell using a picture as well, thank you.

Solutions

Expert Solution

A cell within a multicellular organism may need to signal to other cells that are at various distances from the original cell. Not all cells are affected by the same signals. Different types of signaling are used for different purposes.

In chemical signaling, a cell may target itself (autocrine signaling), a cell connected by gap junctions, a nearby cell (paracrine signaling), or a distant cell (endocrine signaling). Paracrine signaling acts on nearby cells, endocrine signaling uses the circulatory system to transport ligands, and autocrine signaling acts on the signaling cell. Signaling via gap junctions involves signaling molecules moving directly between adjacent cells.

Ligand

Lligand is any molecule or atom which binds reversibly to a protein. A ligand can be an individual atom or ion. It can also be a larger and more complex molecule made from many atoms. A ligand can be natural, as an organic or inorganic molecule. A ligand can also be made synthetically, in the laboratory. This is because the key properties of a ligand are found in its chemical structure. If that structure can be recreated in the laboratory, the synthetic ligand will be able to interact in the same ways a natural ligand acts.

How a Ligand Works

The ligand travels through the watery fluids of an organism, within the blood, tissues, or within a cell itself. The ligand travels at random, but once the concentration is high enough, a ligand will eventually reach a protein. Proteins receiving ligands can be receptors, channels, and can even be the start of a complex series of intertwined proteins. When the ligand binds to the protein, it undergoes a conformational change. This means that while no chemical bonds have been formed or broken, the physical action of the ligand fitting into the protein changes the overall shape of the entire structure. This can trigger many actions. In most cases, the movement of the protein itself activates another chemical pathway, or triggers the release of another messenger ligand, to carry the message to other receptors.

The reversibility of the bond between ligand and protein is a crucial aspect of all forms of life. If ligands bound irreversibly, they could not serve as messengers, and most biological processes would fall apart. If ligands were changed, the way an enzyme changes a substrate, the ligand would become something else after the interaction, and could not be as easily recycled as a messenger. Biologically active proteins are active because of their shape. This shape interacts with the chemistry of the ligand to create a stable connection between the two molecules, which will eventually reverse, leaving both molecules the same. In a substrate and enzyme reaction, the substrate is permanently changed.

It is this ability of the ligand, to activate a protein for a short amount of time and then be recycled, which allows for the biological control of many interactions. The amount of time a ligand spends attached to its receptor or specific protein is a function of the affinity between the ligand and the protein. If there is a high affinity, the ligand will tend to stick to the protein and modify its function for longer. If the ligand has a low affinity for the protein, it will be less likely to bond in the first place and will release from the receptor faster.

The affinity of a particular ligand for a particular protein is determined entirely by its chemical makeup and that of the binding site of the protein. At the binding site, amino acids will be exposed which tend to complement the desired ligand. The amino acids will match the ligand in certain aspects. For instance, both will be hydrophilic or hydrophobic. This increases the attraction between the substances. The amino acids tend to differ from the ligand in terms of electrical activity. If the ligand is positively charged, the binding site should be negatively charged. This creates the strongest interaction. In this way, proteins can obtain a certain degree of specificity for a ligand.

While this is the basis for how cells can begin to tell different molecules apart, it is also at the heart of one of an organism’s biggest problems. Many poisons and toxic substances are so toxic because of their ability to interfere with the protein-ligand binding process. Either the toxin directly binds to the protein itself, because it has a higher affinity, or the toxin otherwise prevents the normal bonding of a ligand to its target protein. Examples of ligands and some competitive toxins can be seen below.

Examples of a Ligand

Oxygen

One ligand that people often overlook is oxygen. In the bloodstream and body tissues, oxygen must reach all the mitochondria in the body if the organism is to survive. But, it is not an easy task to get oxygen everywhere. If oxygen were left to diffuse through the tissue to the cells, it can only pass a few cell layers thick. That is why all organisms of a certain size must contain some sort of circulatory system. Even still, it is hard to move the oxygen ligand where it is needed. Many organisms use specialized proteins for this.

In humans and other mammals, hemoglobin is the major blood protein responsible for transporting oxygen. The hemoglobin protein first attaches to a ligand called heme, which has an iron atom and can help bind oxygen. Thus, hemoglobin picks up oxygen in the lungs. As it travels to the body, the carbon dioxide content in the blood rises. As this happens, the pH lowers, and the conformation of hemoglobin changes. This forces the release of the ligand, oxygen, which can then be absorbed by the cells which need it.

A main competitor of oxygen is carbon monoxide. This is because carbon monoxide has a higher affinity for hemoglobin than oxygen has. In other words, once carbon monoxide is bound to the hemoglobin, it won’t come off. This means that someone exposed to large amounts of carbon monoxide will soon have all their hemoglobin saturated by the wrong ligand. Their body will have no ability to transfer oxygen to the brains and tissues. Even if the person gets oxygen after this, they can still suffocate because of their inability to transport the oxygen.

Dopamine

Dopamine is a ligand used heavily in the brain. When the brain releases dopamine, it is as a signal of a pleasure coming from success. In other words, dopamine is tied to the sensation of motivation. The dopamine receptors in your brain are activated when the ligand dopamine is released by the brain. When the receptors are full of dopamine, your brain feels as if you’ve done something good. This common reward center can be easily thrown off by drugs such as cocaine and methamphetamine.

These drugs, instead of being in direct competition with the ligand, actually increase its effectiveness. They do this by limiting the amount of dopamine which can be recycled. Thus, the brain stays in a constant state of feeling “rewarded”. This is the dangerous feeling which can easily lead to drug addiction. Even though logic tells you drugs are bad, the feelings produced by your brain and the extra dopamine feel real, and tell you to use the drug more.

Other Ligand Uses

Ligands are used in many other applications by cells. The proteins they control can range widely in type and function. Some ligands, like insulin, are used to signal various things to the metabolism of each cell. Another ligand, such as acetylcholine, is used by the brain to transfer nerve impulses between nerves. In this case, it opens an ligand-gated channel, which allows the electrical impulse to flow into the cell and down the length of it. This cell will then transmit acetylcholine to the next cell, and the signal will continue.

Some enzymes are controlled by regulatory ligands, which effectively turn the enzyme on. Without it, they do not have the proper shape to transform the molecules they operate on. When the ligand is present, however, these enzymes spring to life and function properly. Many ligands are needed for controlling the metabolism and other complex processes. Each ligand has a certain affinity, which is important, and also a point at which the receptors become saturated. Above this limit, no higher concentration of ligand will bring a greater reaction.

In general chemistry, a ligand may refer to any molecule bound to a transition metal. This is not the case in biology. In biology, a ligand is any molecule which attaches reversibly to a protein. These are typically used in cellular signaling and cellular regulation, but have many other uses.

Receptors

Receptors are protein molecules inside the target cell or on its surface that receive a chemical signal. Chemical signals are released by signaling cells in the form of small, usually volatile or soluble molecules called ligands.

Types of Receptors

INTERNAL RECEPTORS

Internal receptors, also known as intracellular or cytoplasmic receptors, are found in the cytoplasm of the cell and respond to hydrophobic ligand molecules that are able to travel across the plasma membrane. Once inside the cell, many of these molecules bind to proteins that act as regulators of mRNA synthesis. Recall that mRNA carries genetic information from the DNA in a cell’s nucleus out to the ribosome, where the protein is assembled. When the ligand binds to the internal receptor, a change in shape is triggered that exposes a DNA-binding site on the receptor protein. The ligand-receptor complex moves into the nucleus, then binds to specific regions of the DNA and promotes the production of mRNA from specific genes. Internal receptors can directly influence gene expression (how much of a specific protein is produced from a gene) without having to pass the signal on to other receptors or messengers.

CELL-SURFACE RECEPTORS

Cell-surface receptors, also known as transmembrane receptors, are proteins that are found attached to the cell membrane. These receptors bind to external ligand molecules (ligands that do not travel across the cell membrane). This type of receptor spans the plasma membrane and performs signal transduction, in which an extracellular signal is converted into an intercellular signal. Ligands that interact with cell-surface receptors do not have to enter the cell that they affect. Cell-surface receptors are also called cell-specific proteins or markers because they are specific to individual cell types.

Ion channel-linked receptors

Ion channel-linked receptors bind a ligand and open a channel through the membrane that allows specific ions to pass through. To form a channel, this type of cell-surface receptor has an extensive membrane-spanning region. When a ligand binds to the extracellular region of the channel, there is a conformational change in the proteins structure that allows ions such as sodium, calcium, magnesium, and hydrogen to pass through.

Increase Font Size

Toggle Menu

  • Search in book: SEARCH

CONTENTS

PRINCIPLES OF BIOLOGY: BIOLOGY 211, 212, AND 213

Types of Receptors

A cell within a multicellular organism may need to signal to other cells that are at various distances from the original cell (Figure 1). Not all cells are affected by the same signals. Different types of signaling are used for different purposes.

Figure 1 In chemical signaling, a cell may target itself (autocrine signaling), a cell connected by gap junctions, a nearby cell (paracrine signaling), or a distant cell (endocrine signaling). Paracrine signaling acts on nearby cells, endocrine signaling uses the circulatory system to transport ligands, and autocrine signaling acts on the signaling cell. Signaling via gap junctions involves signaling molecules moving directly between adjacent cells.

Receptors are protein molecules inside the target cell or on its surface that receive a chemical signal. Chemical signals are released by signaling cells in the form of small, usually volatile or soluble molecules called ligands. A ligand is a molecule that binds another specific molecule, in some cases, delivering a signal in the process. Ligands can thus be thought of as signaling molecules. Ligands and receptors exist in several varieties; however, a specific ligand will have a specific receptor that typically binds only that ligand.

INTERNAL RECEPTORS

Internal receptors, also known as intracellular or cytoplasmic receptors, are found in the cytoplasm of the cell and respond to hydrophobic ligand molecules that are able to travel across the plasma membrane. Once inside the cell, many of these molecules bind to proteins that act as regulators of mRNA synthesis. Recall that mRNA carries genetic information from the DNA in a cell’s nucleus out to the ribosome, where the protein is assembled. When the ligand binds to the internal receptor, a change in shape is triggered that exposes a DNA-binding site on the receptor protein. The ligand-receptor complex moves into the nucleus, then binds to specific regions of the DNA and promotes the production of mRNA from specific genes (Figure 2). Internal receptors can directly influence gene expression (how much of a specific protein is produced from a gene) without having to pass the signal on to other receptors or messengers.

Figure 2 Hydrophobic signaling molecules typically diffuse across the plasma membrane and interact with intracellular receptors in the cytoplasm. Many intracellular receptors are transcription factors that interact with DNA in the nucleus and regulate gene expression.

CELL-SURFACE RECEPTORS

Cell-surface receptors, also known as transmembrane receptors, are proteins that are found attached to the cell membrane. These receptors bind to external ligand molecules (ligands that do not travel across the cell membrane). This type of receptor spans the plasma membrane and performs signal transduction, in which an extracellular signal is converted into an intercellular signal. Ligands that interact with cell-surface receptors do not have to enter the cell that they affect. Cell-surface receptors are also called cell-specific proteins or markers because they are specific to individual cell types.

Each cell-surface receptor has three main components: an external ligand-binding domain, a hydrophobic membrane-spanning region, and an intracellular domain inside the cell. The size and extent of each of these domains vary widely, depending on the type of receptor.

Figure 3 Cell-surface receptors function by transmitting a signal through the cell membrane. The ligand does not directly enter the cell. Photo credit Laozhengzz; Wikimedia commons.

Cell-surface receptors are involved in most of the signaling in multicellular organisms. There are three general categories of cell-surface receptors: ion channel-linked receptors, G-protein-linked receptors, and enzyme-linked receptors.

Ion channel-linked receptors

Ion channel-linked receptors bind a ligand and open a channel through the membrane that allows specific ions to pass through. To form a channel, this type of cell-surface receptor has an extensive membrane-spanning region. When a ligand binds to the extracellular region of the channel, there is a conformational change in the proteins structure that allows ions such as sodium, calcium, magnesium, and hydrogen to pass through (Figure 4).

Figure 4 Gated ion channels form a pore through the plasma membrane that opens when the signaling molecule binds. The open pore then allows ions to flow into or out of the cell.

G-protein-coupled receptors

G-protein-coupled receptors bind a ligand and activate a membrane protein called a G-protein. The activated G-protein then interacts with either an ion channel or an enzyme in the membrane. Before the ligand binds, the inactive G-protein can bind to a site on a specific receptor. Once the G-protein binds to the receptor, the G-protein changes shape, becomes active, and splits into two different subunits. One or both of these subunits may be able to activate other proteins as a result.


Related Solutions

Briefly describe the structure of the lipid bi-layer of cells including ligands and receptors. You can...
Briefly describe the structure of the lipid bi-layer of cells including ligands and receptors. You can use diagrams to support your answer. this is a past paper question but there are no solutions so i don't know how much to write for this or what to include/not include. Please help and provide a solution that i can check my answer with. thank you
Plasma membrane receptors must somehow let the inside of the cell “know” that a ligand/signal is...
Plasma membrane receptors must somehow let the inside of the cell “know” that a ligand/signal is present on the outside of the cell. In most cases, the ligand does NOT enter the cell. How does the inside of the cell “get the message”? Name two specific mechanisms for how this can be achieved. List and describe each mechanism. Then provide one example for each.   Mechanism 1 (including example): Mechanism 2 (including example):
Indicate from how T-cell receptors differ from B cell receptors in the way that they recognize...
Indicate from how T-cell receptors differ from B cell receptors in the way that they recognize antigen. Your answer must include: peptides, antigen-presenting cells, MHC molecules, and antigen-binding sites
Part I: Explain why any cell in the body can become any cell type of the...
Part I: Explain why any cell in the body can become any cell type of the body. Cancer occurs when the cell cycle becomes unregulated and grows out of control. Why do you think there are so many different types of cancer? Part II: The practice of buying and selling gametes, particularly eggs from fertile women, is becoming increasingly common in the United States and some other industrialized countries. Describe how gametes are produced using Meiosis. Discuss some of the...
explain the cycle of lymph fliud throughout the body.
explain the cycle of lymph fliud throughout the body.
Briefly describe how DNA is packaged to fit inside a cell. Explain, in detail, how DNA...
Briefly describe how DNA is packaged to fit inside a cell. Explain, in detail, how DNA replication occurs. INCLUDE: DNA polymerase, RNA polymerase, primase and ligase. 500 words minimum
How can the zygote produce diverse cell types found in human body? How can the cells...
How can the zygote produce diverse cell types found in human body? How can the cells form well-organized structures such as tissues and organs? Explain mechanisms related to these questions.
Can anyone explain ligands, complex ion and amphoteric substances that can act as an acid or...
Can anyone explain ligands, complex ion and amphoteric substances that can act as an acid or base. (simply terms - high school student) It is for a lab I did of separation and identification of metal cations and I do not understand this to write a discussion part on my lab report. thank you
How would you puriry a protein from inside a bateria cell. How might you lyse bacteria?...
How would you puriry a protein from inside a bateria cell. How might you lyse bacteria? and remove the cellular debris?
Explain the cell signaling pathway which involves membrane receptor (tyrosine kinase receptors and G protein-coupled receptors)....
Explain the cell signaling pathway which involves membrane receptor (tyrosine kinase receptors and G protein-coupled receptors). Use ONE (1) specific example to explain each reception pathway.                                    The details of the summary should be concise and informative. The length of the summary for each type of membrane receptor should be less than 200 words.   
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT