In: Statistics and Probability
Brand |
Price (X) |
Score (Y) |
|||||
Dell |
2900 |
50 |
|||||
Hisense |
2800 |
52 |
|||||
Hitachi |
2700 |
45 |
|||||
JVC |
3500 |
60 |
|||||
LG |
3300 |
56 |
|||||
Maxent |
2000 |
30 |
|||||
Panasonic |
4200 |
68 |
|||||
Phillips |
3100 |
56 |
|||||
Proview |
2500 |
35 |
|||||
Samsung |
3000 |
48 |
|||||
Use the above data to develop and estimated regression equation and interpret the coefficients. Compute Coefficient of Determination and correlation coefficient and show their relation. Interpret the explanatory power of the model. Estimate the overall score for a 42-inch plasma television with a price of $3400. Finally, test the significance of the slope coefficient. (Note that you need to answer all parts of the question and provide necessary interpretations to get full points).
X | Y | XY | X² | Y² |
2900 | 50 | 145000 | 8410000 | 2500 |
2800 | 52 | 145600 | 7840000 | 2704 |
2700 | 45 | 121500 | 7290000 | 2025 |
3500 | 60 | 210000 | 12250000 | 3600 |
3300 | 56 | 184800 | 10890000 | 3136 |
2000 | 30 | 60000 | 4000000 | 900 |
4200 | 68 | 285600 | 17640000 | 4624 |
3100 | 56 | 173600 | 9610000 | 3136 |
2500 | 35 | 87500 | 6250000 | 1225 |
3000 | 48 | 144000 | 9000000 | 2304 |
Ʃx = | Ʃy = | Ʃxy = | Ʃx² = | Ʃy² = |
30000 | 500 | 1557600 | 93180000 | 26154 |
Sample size, n = | 10 |
x̅ = Ʃx/n = 30000/10 = | 3000 |
y̅ = Ʃy/n = 500/10 = | 50 |
SSxx = Ʃx² - (Ʃx)²/n = 93180000 - (30000)²/10 = | 3180000 |
SSyy = Ʃy² - (Ʃy)²/n = 26154 - (500)²/10 = | 1154 |
SSxy = Ʃxy - (Ʃx)(Ʃy)/n = 1557600 - (30000)(500)/10 = | 57600 |
Slope, b = SSxy/SSxx = 57600/3180000 = 0.0181132
y-intercept, a = y̅ -b* x̅ = 50 - (0.01811)*3000 = -4.339623
Regression equation :
ŷ = -4.3396 + (0.0181) x
Slope: With a unit increase price, the value of score increases by 0.0181 units
Y-intercept: It is value when x = 0. it is not reasonable in this case.
--
Correlation coefficient, r = SSxy/√(SSxx*SSyy) = 57600/√(3180000*1154) = 0.9508
Coefficient of determination, r² = (SSxy)²/(SSxx*SSyy) = (57600)²/(3180000*1154) = 0.9041
90.41% variation in y is explained by the least squares model.
--
Predicted value of y at x = 3400
ŷ = -4.3396 + (0.0181) * 3400 = 57.2453
--
Null and alternative hypothesis:
Ho: β₁ = 0
Ha: β₁ ≠ 0
Sum of Square error, SSE = SSyy -SSxy²/SSxx = 1154 - (57600)²/3180000 = 110.6792453
Standard error, se = √(SSE/(n-2)) = √(110.67925/(10-2)) = 3.71953
Test statistic:
t = b/(se/√SSxx) = 8.6840
df = n-2 = 8
p-value = T.DIST.2T(ABS(8.684), 8) = 0.0000
Conclusion:
p-value < α Reject the null hypothesis. The slope is significant.