Question

In: Physics

For the system of four capacitors shown in the figure below, find the following. (Use C1...

For the system of four capacitors shown in the figure below, find the following. (Use C1 = 1.00 μF, C2 = 4.00 μF, C3 = 2.00 μF. and C4 = 3.00 μF for the figure.) 

image.png

(a) the total energy stored in the system 


(b) the energy stored by each capacitor 


(c) Compare the sum of the answers in part (b) with your result to part (a) and explain your observation.

Solutions

Expert Solution


Related Solutions

For the system of four capacitors shown in the figure below, find the following. (Use C1...
For the system of four capacitors shown in the figure below, find the following. (Use C1 = 1.0
Consider the system of capacitors shown in the figure below (C1 = 7.00
Consider the system of capacitors shown in the figure below (C1 = 7.00
Consider the system of capacitors shown in the figure below
Consider the system of capacitors shown in the figure below (C1 = 4.00 μF,C2 = 2.00 μF). (a) Find the equivalent capacitance of the system.  (b) Find the charge on each capacitor.  (c) Find the potential difference across each capacitor (d) Find the total energy stored by the group.
For the system of capacitors shown in the the figure below(Figure 1) , a potential difference...
For the system of capacitors shown in the figure below(Figure 1), a potential difference of 25.0V is maintained across ab.Part (a): What is the equivalent capacitance of this system between a and b in nF?Part (b): How much charge is stored by this system in nC?Part (c): How much charge does the 6.50 nF capacitor store in nC?Part (d): What is the potential difference across the 7.50 nF capacitor in V?
Four capacitors are arranged in the circuit shown in the figure
Four capacitors are arranged in the circuit shown in the figure. The capacitors have the values C1 = 23.5 μF, C2 = 45.5 μF, C3 = 50.5 μF, and C4 = 40.5 μF, and the power supply is at voltage V = 27.5 V. What is the equivalent capacitance of the circuit? equivalent capacitance: _______  μF What is the charge on capacitor C2? charge on C2:_______  CWhat is the potential difference across capacitor C3? potential difference across C3: _______ VWhat is the potential energy stored...
The figure shows a 11.8 V battery and four uncharged capacitors of capacitances C1 = 1.16...
The figure shows a 11.8 V battery and four uncharged capacitors of capacitances C1 = 1.16 μF,C2 = 2.31 μF,C3 = 3.26 μF, and C4 = 4.19 μF. If only switch S1 is closed, what is the charge on (a) capacitor 1, (b) capacitor 2, (c) capacitor 3, and (d) capacitor 4? If both switches are closed, what is the charge on (e) capacitor 1, (f) capacitor 2, (g) capacitor 3, and (h) capacitor 4?
Find the following. (In the figure use C1 = 19.60 μF and C2 =13.60 μF.)(values are...
Find the following. (In the figure use C1 = 19.60 μF and C2 =13.60 μF.)(values are μF)a) The equivalent capacitance of the capacitors in the figureabove_____μFb) The charge on each capacitoron the right 19.60 μF capacitor_____μCon the   13.60 µF capacitor ________μCon the 6.00 µF capacitor__________μC(c) the potential difference across each capacitoron the right 19.60 µFcapacitor______Von the left 19.60 µFcapacitor_______Von the 13.60 µFcapacitor__________Von the 6.00 µF capacitor___________V
Find the measure of angle A in the figure shown below
Find the measure of angle A in the figure shown below
Four capacitors are arranged in the circuit shown in the figure.The capacitors have the values...
Four capacitors are arranged in the circuit shown in the figure. The capacitors have the values C1 = 39.5 μF, C2 = 13.5 μF, C3 = 45.5 μF, C4 = 85.5 μF, and the power supply is set at voltage V = 16.5 V.What is the equivalent capacitance of the circuit?What is the charge on capacitor C3?What is the potential difference across capacitor C4?What is the potential energy stored in capacitor C2?
Three charges are arranged as shown in the figure below. Find the magnitude and direction of...
Three charges are arranged as shown in the figure below. Find the magnitude and direction of the electrostatic force on the charge q = 4.82 nC at the origin. (Let r12 = 0.295m.) magnitude     N direction    
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT