Question

In: Math

Find the measure of angle A in the figure shown below

Find the measure of angle A in the figure shown below

Solutions

Expert Solution

in this question, we first determine the interior angles that are supplementary to the angles; 1290 and 1380

if two angles are supplementary, their sum is 180

the first angle therefore can be obtained as:

1800 - 1290 = 510

the second angle can be obtained as:

1800-1380 = 420

we sum up the two interior angles.

420+510 = 930

the sum of all the interior angles of a triangle is 1800.

to obtain the value of angle A, we subtract 930 from 1800 to obtain;

1800 - 930 = 87


the value of the angle is 870 

Related Solutions

Find the size of angle MBD in the figure below
Find the size of angle MBD in the figure below
Three charges are arranged as shown in the figure below. Find the magnitude and direction of...
Three charges are arranged as shown in the figure below. Find the magnitude and direction of the electrostatic force on the charge q = 4.82 nC at the origin. (Let r12 = 0.295m.) magnitude     N direction    
in the figure shown, MN and NR intersect at point p. NP=QP, and MP=PR. what is the measure, in degrees of angle QMR?
in the figure shown, MN and NR intersect at point p. NP=QP, and MP=PR. what is the measure, in degrees of angle QMR?
For the system of four capacitors shown in the figure below, find the following. (Use C1...
For the system of four capacitors shown in the figure below, find the following. (Use C1 = 1.00 μF, C2 = 4.00 μF, C3 = 2.00 μF. and C4 = 3.00 μF for the figure.) (a) the total energy stored in the system (b) the energy stored by each capacitor (c) Compare the sum of the answers in part (b) with your result to part (a) and explain your observation.
Three point charges are arranged as shown in the figure below. Find the magnitude and direction...
Three point charges are arranged as shown in the figure below. Find the magnitude and direction of the electric force on the particle q = 5.08 nC at the origin. (Let r12 = 0.290 m.) FIND: magnitude     N direction     ° counterclockwise from the +x axis Three point charges lie along the axes in the x y coordinate plane. Positive charge q is at the origin. A charge of 6.00 nC is at (r1 2, 0), where r1 2 > 0....
Given the two charged particles shown in the figure below, find the electric field at the...
Given the two charged particles shown in the figure below, find the electric field at the origin. (Let q1 = −26.00 nC and q2 = 7.00 nC.  Express your answer in vector form.) q1 is at (2,4) and q2 is at (-2,3)
For the system of four capacitors shown in the figure below, find the following. (Use C1...
For the system of four capacitors shown in the figure below, find the following. (Use C1 = 1.0
Consider the circuit shown in the figure below. (Let R = 26.0 ohm.) Find the current...
Consider the circuit shown in the figure below. (Let R = 26.0 ohm.)  Find the current in the 26.0-OHM resistor.  Compare the potential difference across the 10-ohm resistor, the  Find the potential difference between points a and b.  Is it possible for the potential difference across any element
For the system of capacitors shown in the the figure below(Figure 1) , a potential difference...
For the system of capacitors shown in the figure below(Figure 1), a potential difference of 25.0V is maintained across ab.Part (a): What is the equivalent capacitance of this system between a and b in nF?Part (b): How much charge is stored by this system in nC?Part (c): How much charge does the 6.50 nF capacitor store in nC?Part (d): What is the potential difference across the 7.50 nF capacitor in V?
Consider the system of capacitors shown in the figure below
Consider the system of capacitors shown in the figure below (C1 = 4.00 μF,C2 = 2.00 μF). (a) Find the equivalent capacitance of the system.  (b) Find the charge on each capacitor.  (c) Find the potential difference across each capacitor (d) Find the total energy stored by the group.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT