Question

In: Statistics and Probability

1) Two teams, A and B, are playing a best of 5 game series. (The series...

1) Two teams, A and B, are playing a best of 5 game series. (The series is over once one team wins 3 games). The probability of A winning any given game is 0.6. Draw the tree diagram for all possible outcomes of the series.

2) List all possible combinations of rolling a 4-sided die (d4) and a 6-sided die (d6) (enumaration). Also determine the probability X {1..6} where X is the largest of the two numbers. Two players, A and B, are playing a game of dice. Player A rolls a d4 and a d6 and takes the largest of the two numbers (i.e. problem #2) Player B rolls a 6-sided die and adds one to the total. Player A wins on ties.

3) What is the conditional probability Player A wins given B's score is 3 (B rolled a 2)

4) What is the probability that player A will win any given game?

Solutions

Expert Solution

1.

2.


Related Solutions

(a) Two teams, A and B, are playing in the best-of-7 World Series; whoever gets to...
(a) Two teams, A and B, are playing in the best-of-7 World Series; whoever gets to 4 wins first wins the series. Suppose the home team always has a small advantage, winning each game with probability 0.6 and losing with probability 0.4. Also assume that every game is independent. What is the probability that team A will win the series in exactly 6 games if the series is played in the following format: A–A–B–B–B–A–A, meaning that the first two games...
Two teams, A and B, are playing a series of games. Assume 1. probability that A...
Two teams, A and B, are playing a series of games. Assume 1. probability that A won a game is p 2. result of a game will not aect result of the next game Find the range of p such that team A has the advantage in a best four of seven series.
(URGENCY!!) In a volleyball game between two teams , A and B, the game will be...
(URGENCY!!) In a volleyball game between two teams , A and B, the game will be over if a team wins two out of three sets. In any set, team A has a 60 percent chance of winning the sets. (You may use a computer to calculate the inverse matrix. All other calculations must in in your answer page) a.   Model this game as a Markov chain. Hint: Use (WA, WB) as the states where WA is the number of...
In a volleyball game between two teams , A and B, the game will be over...
In a volleyball game between two teams , A and B, the game will be over if a team wins two out of three sets. In any set, team A has a 60 percent chance of winning the sets. Model this game as a Markov chain. Hint: Use (WA, WB) as the states where WA is the number of sets A wins and WB is the number of sets B wins. For example state (1,0) means A won 1 set...
(URGENCY!!) In a volleyball game between two teams , A and B, the game will be...
(URGENCY!!) In a volleyball game between two teams , A and B, the game will be over if a team wins two out of three sets. In any set, team A has a 60 percent chance of winning the sets. (You may use a computer to calculate the inverse matrix. All other calculations must in in your answer page) a.   Model this game as a Markov chain. Hint: Use (WA, WB) as the states where WA is the number of...
Consider a best-of-seven series. Two teams A and B play one another until one of the...
Consider a best-of-seven series. Two teams A and B play one another until one of the teams wins 4 games. The games are played indepedently, and the probability of team A winning any game is 2/3. a. Find the expected number of games the series lasts. b. Find the expected number of games team A wins. c. Find the expected number of games team B wins. d. Find the probability of team B winning the series.
Two baseball teams play a best-of-seven series, in which the series ends as soon as one...
Two baseball teams play a best-of-seven series, in which the series ends as soon as one team wins four games. The first two games are to be played on A’s field, the next three games on B’s field, and the last two on A’s field. The probability that A wins a game is 0:7 at home and 0:5 away. Assume that the results of the games are independent. Find the probability that: (a) A wins the series in 4 games;...
Two teams A and B are playing against each other in a tournament. The first team...
Two teams A and B are playing against each other in a tournament. The first team to win 3 games is the champion. In each of the games, A has a probability of 0.25 to win, independent of the outcome of the previous games. Let random variable X represent the number of the games played. (b) compute the PMF Px(x) (d) During the tournament, team A was not able to win the tournament after the first 4 games. Compute the...
Two teams, the Exponents and the Radicals, square off in a best of 5 math hockey...
Two teams, the Exponents and the Radicals, square off in a best of 5 math hockey tournament. Once a team wins 3 games, the tournament is over. The schedule of the tournament (for home games) goes: E-R-E-R-E If the Exponents are playing at home, there is a 60% chance they'll win. If they are playing on the road, there is a 45% chance they'll win. Find the probability that the Exponents win the series. Round answers to at least 4...
Two players (player A and player B) are playing a game against each other repeatedly until...
Two players (player A and player B) are playing a game against each other repeatedly until one is bankrupt. When a player wins a game they take $1 from the other player. All plays of the game are independent and identical. Suppose player A starts with $6 and player B starts with $6. If player A wins a game with probability 0.5, what is the probability the game ends (someone loses all their money) on exactly the 10th play of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT