Question

In: Economics

Assume your utility function for shoes (x) and hats (y) is given by U(x,y)=x3y5. a) What...

Assume your utility function for shoes (x) and hats (y) is given by U(x,y)=x3y5.

a) What type of utility function is this? What is the MRS?

b) Let Px = 10, Py = 25, and M = 160. Solve for the optimal consumption of shoes and hats.

c) Suppose there is a sale on hats and the price of hats decreases to Py = 20. Solve for your new optimal bundle of shoes and hats.

Solutions

Expert Solution


Related Solutions

Assume a Cobb-douglas utility function of 2 goods x and y given by U = x...
Assume a Cobb-douglas utility function of 2 goods x and y given by U = x 0.5y 0.5 and an initial income I of 100. Let initial price be px = 4 and py = 1. Now vary the price of x from 1 to 7 in steps of 1. So you have 7 prices for x. px = {1, 2, 3, 4, 5, 6, 7} For each of these px, py REMAINS the SAME at 1. In the excel...
Suppose a consumer's utility function is given by U ( X , Y ) = X...
Suppose a consumer's utility function is given by U ( X , Y ) = X 1 2 Y 1 2. The price of X is PX=8 and the price of Y is PY=5. The consumer has M=80 to spend. You may find that it helps to draw a graph to organize the information in this question. You may draw in the blank area on the front page of the assignment, but this graph will not be graded. a) (2...
Your utility function over x and y is U ( x , y ) = l...
Your utility function over x and y is U ( x , y ) = l n ( x ) + 0.25 y. Your income is $20. You don’t know the prices of x or y so leave them as variables (p x and p y). a) (8 points) Find x*, your demand function for x. Find y*, your demand function for y. b) (10 points) Find the cross-price elasticity of demand for x (E x ∗ , p y:...
Given the utility function U ( X , Y ) = X 1 3 Y 2...
Given the utility function U ( X , Y ) = X 1 3 Y 2 3, find the absolute value of the MRS when X=10 and Y=24. Round your answer to 4 decimal places.
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy + 2,000. Tammy’s utility function is U(x, y) = xy(1 - xy). Oral’s utility function is -1/(10 + xy. Billy’s utility function is U(x, y) = x/y. Pat’s utility function is U(x, y) = -xy. a. No two of these people have the same preferences. b. They all have the same preferences except for Billy. c. Jim, Jerry, and Pat all have the same...
A consumes two goods, x and y. A ’s utility function is given by u(x, y)...
A consumes two goods, x and y. A ’s utility function is given by u(x, y) = x 1/2y 1/2 The price of x is p and the price of y is 1. A has an income of M. (a) Derive A ’s demand functions for x and y. (b) Suppose M = 72 and p falls from 9 to 4. Calculate the income and substitution effects of the price change. (c) Calculate the compensating variation of the price change....
Suppose a consumer has a utility function given by u(x, y) = x + y, so...
Suppose a consumer has a utility function given by u(x, y) = x + y, so that the two goods are perfect substitutes. Use the Lagrangian method to fully characterize the solution to max(x,y) u(x, y) s.t. x + py ≤ m, x ≥ 0, y ≥ 0, where m > 0 and p < 1. Evaluate and interpret each of the multipliers in this case. What happens to your solution when p > 1? What about when p =...
Suppose Anne’s utility function for food (X) and clothing (Y) is given by U (X,Y) =...
Suppose Anne’s utility function for food (X) and clothing (Y) is given by U (X,Y) = 4X1/2 + Y and Anne had budget constraint I = PxX + PyY. a. Find Anne’s optimal bundle if Px = 4 and Py = 4 and Anne has I = 60. b. Discuss how the demand for X depends on her income. c. Suppose now that the price of X increases to 8. Find the SE and IE of the price change.
Chepa’s utility function is given by U (x, y) = ln x + 4 ln y....
Chepa’s utility function is given by U (x, y) = ln x + 4 ln y. Assume that Chepa has endowments (10, 10) and that Py = 10 throughout the problem. (h) This part of the question is to investigate Chepa’s welfare under different prices. We will do it step by step. (i) By substituting out the M with the expression of Chepa’s endowment income (see part (g)), obtain Chepa’s gross demands as functions of Px. (ii) Plug your answer...
Question 1 Chepa’s utility function is given by U(x,y) = lnx + 4lny. Assume that Chepa...
Question 1 Chepa’s utility function is given by U(x,y) = lnx + 4lny. Assume that Chepa has endowments (10,10) and that Py = 10 throughout the problem. (Note: this part of the question is intended to reduce your workload. If you prefer not to work with a general demand function but calculate the demand separately for each of the cases, you can do this part after part (f).) Given Py = 10, solve for the optimal bundle for Chepa as...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT