In: Statistics and Probability
1. As a result of running a simple regression on a data set, the following estimated regression equation was obtained:
= 9.7 + 13.4x
Furthermore, it is known that SST = 622, and SSE = 150.
2. You are given the following information about y and x:
| 
 y  | 
 x  | 
|
| 
 Dependent Variable  | 
 Independent Variable  | 
|
| 
 11  | 
 6  | 
|
| 
 15  | 
 5  | 
|
| 
 10  | 
 2  | 
|
| 
 14  | 
 2  | 
Linear regression using least squares method yielded the
following equation:
  = 12.06 + 0.12x
What is the predicted value of y when
x = 1? Round your answer to two decimal
places.
Calculate the correlation coefficient R; round your answer to three decimal places.
3. You are given the following information about variables y and x:
| 
 y  | 
 x  | 
|
| 
 Dependent Variable  | 
 Independent Variable  | 
|
| 
 -10.0  | 
 -9.1  | 
|
| 
 8.2  | 
 -7.8  | 
|
| 
 -5.5  | 
 6.4  | 
|
| 
 10.3  | 
 -9.0  | 
In addition, it is known that the slope of the
regression line b1= -6.6
The y-intercept b0for
the estimated regression equation equals ____ (round your answer to
two decimal places).
2)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | 15 | 50 | 12.75 | 17.0 | 1.50 | 
| mean | 3.75 | 12.50 | SSxx | SSyy | SSxy | 
sample size ,   n =   4  
       
here, x̅ = Σx / n=   3.75   ,
    ȳ = Σy/n =   12.50  
          
       
SSxx =    Σ(x-x̅)² =    12.7500  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   1.5  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   1.5  
/   12.750   =   0.1176
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
12.0588          
          
       
so, regression line is   Ŷ =  
12.0588   +   0.117647   *x
          
       
SSE=   (SSxx * SSyy - SS²xy)/SSxx =   
16.8          
          
       
std error ,Se =    √(SSE/(n-2)) =   
2.90          
          
       
correlation coefficient ,    r = Sxy/√(Sx.Sy)
=   0.102   
Predicted Y at X=   1   is  
           
   
Ŷ =   12.05882   +  
0.117647   *   1   =  
12.18
3)
| ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
| total sum | -19.5 | 3 | 170.5475 | 301.3 | -86.24 | 
| mean | -4.88 | 0.75 | SSxx | SSyy | SSxy | 
sample size ,   n =   4  
       
here, x̅ = Σx / n=   -4.88   ,
    ȳ = Σy/n =   0.75  
          
       
SSxx =    Σ(x-x̅)² =    170.5475  
       
SSxy=   Σ(x-x̅)(y-ȳ) =   -86.2  
       
          
       
estimated slope , ß1 = SSxy/SSxx =   -86.2  
/   170.548   =   -0.5056
          
       
intercept,   ß0 = y̅-ß1* x̄ =  
-1.72   
THANKS
revert back for doubt
please upvote