Question

In: Statistics and Probability

1. As a result of running a simple regression on a data set, the following estimated...

1. As a result of running a simple regression on a data set, the following estimated regression equation was obtained:

      = 9.7 + 13.4x

Furthermore, it is known that SST = 622, and SSE = 150.

2. You are given the following information about y and x:

y

x

Dependent Variable

Independent Variable

11

6

15

5

10

2

14

2

Linear regression using least squares method yielded the following equation:
  = 12.06 + 0.12x

What is the predicted value of y when x = 1? Round your answer to two decimal places.

Calculate the correlation coefficient R; round your answer to three decimal places.

3. You are given the following information about variables y and x:

y

x

Dependent Variable

Independent Variable

-10.0

-9.1

8.2

-7.8

-5.5

6.4

10.3

-9.0

In addition, it is known that the slope of the regression line b1= -6.6
The y-intercept b0for the estimated regression equation equals ____ (round your answer to two decimal places).

Solutions

Expert Solution

2)

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 15 50 12.75 17.0 1.50
mean 3.75 12.50 SSxx SSyy SSxy

sample size ,   n =   4          
here, x̅ = Σx / n=   3.75   ,     ȳ = Σy/n =   12.50  
                  
SSxx =    Σ(x-x̅)² =    12.7500          
SSxy=   Σ(x-x̅)(y-ȳ) =   1.5          
                  
estimated slope , ß1 = SSxy/SSxx =   1.5   /   12.750   =   0.1176
                  
intercept,   ß0 = y̅-ß1* x̄ =   12.0588          
                  
so, regression line is   Ŷ =   12.0588   +   0.117647   *x
                  
SSE=   (SSxx * SSyy - SS²xy)/SSxx =    16.8          
                  
std error ,Se =    √(SSE/(n-2)) =    2.90          
                  
correlation coefficient ,    r = Sxy/√(Sx.Sy) =   0.102   

Predicted Y at X=   1   is                  
Ŷ =   12.05882   +   0.117647   *   1   =   12.18

3)

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum -19.5 3 170.5475 301.3 -86.24
mean -4.88 0.75 SSxx SSyy SSxy

sample size ,   n =   4          
here, x̅ = Σx / n=   -4.88   ,     ȳ = Σy/n =   0.75  
                  
SSxx =    Σ(x-x̅)² =    170.5475          
SSxy=   Σ(x-x̅)(y-ȳ) =   -86.2          
                  
estimated slope , ß1 = SSxy/SSxx =   -86.2   /   170.548   =   -0.5056
                  
intercept,   ß0 = y̅-ß1* x̄ =   -1.72   


THANKS

revert back for doubt

please upvote

   


Related Solutions

Question 1. In this exercise you will simulate a data set and run a simple regression....
Question 1. In this exercise you will simulate a data set and run a simple regression. To ensure reproducible results, make sure you use set.seed(1). a)   Using the rnorm() function create vector X that contains 200 observations from N(0,1) distribution. Similarly, create a 200 element vector, epsilon (ϵ), drawn from N(0,0.25) distribution. This is the irreducible error. b)   Create the response data using the following relationship: Y=−1+0.5X+ϵ Fit a linear regression of Y on X. Display the summary statistics and...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression Result Dependent Variable: LGDP Method: Least Squares Sample: 2000Q1 2012Q4 Included observations: 52 Variable Coefficient Std. Error t-Statistic Prob. LM2 0.796910 0.032383 24.60868 0.0000 LREER -0.060125 0.065220 -0.921892 0.3613 LSDR 0.051745 0.074618 0.693465 0.4914 LTBR 0.029174 0.007715 3.781436 0.0004 C 2.795406 0.427355 6.541183 0.0000 R-squared 0.986591 Mean dependent var 13.28409 Adjusted R-squared 0.985450 S.D. dependent var 0.429315 S.E. of regression 0.051786 Akaike info criterion...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression...
Based on the EViews result in Table 1, answer the following questions. Table 1: Estimated Regression Result Dependent Variable: LGDP Method: Least Squares Sample: 2000Q1 2012Q4 Included observations: 52 Variable Coefficient Std. Error t-Statistic Prob.   LM2 0.796910 0.032383 24.60868 0.0000 LREER -0.060125 0.065220 -0.921892 0.3613 LSDR 0.051745 0.074618 0.693465 0.4914 LTBR 0.029174 0.007715 3.781436 0.0004 C 2.795406 0.427355 6.541183 0.0000 R-squared 0.986591     Mean dependent var 13.28409 Adjusted R-squared 0.985450     S.D. dependent var 0.429315 S.E. of regression 0.051786     Akaike info criterion...
For the attached data set, create a simple linear regression equation defining the relationship between height...
For the attached data set, create a simple linear regression equation defining the relationship between height and weight. Use the regression equation to predict the weight for a given height of 5.75 inches PLEASE PROVIDE EXCEL STEP CALCULATIONS Height (in feet) X Weight   (in pounds) Y 4.8228348 115.1032102 4.92126 117.1094144 4.9868768 120.1076976 5.085302 123.1059808 5.1509188 126.104264 5.249344 129.1245934 5.3477692 132.1228766 5.413386 135.1211598 5.5118112 139.1335682 5.577428 142.1318514 5.6758532 146.1222136 5.74147 150.134622 5.8398952 154.1470304 5.905512 159.1515178 6.0039372 164.1560052
a) Run a regression analysis on the following bivariate set of data with y as the...
a) Run a regression analysis on the following bivariate set of data with y as the response variable. x y 10.7 81.6 13.7 81.5 36.7 56.5 4 72.1 50.7 23.2 47.6 -4.8 37.3 31.9 24.3 75.2 21.5 59.3 17.2 54.6 23.6 75.5 22.2 60.8 29.3 51 14 63.4 0.2 102.7 30.7 48.2 10.3 74.8 26.5 48.2 23.1 87 Verify that the correlation is significant at an ?=0.05?=0.05. If the correlation is indeed significant, predict what value (on average) for the...
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary...
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary table and interpret the intercept and slope coefficient estimates of the linear model.                                                           Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary table and interpret the intercept and slope coefficient estimates of the linear model.                                                           
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary...
Estimate a simple linear regression model and present the estimated linear equation. Display the regression summary table and interpret the intercept and slope coefficient estimates of the linear model.                                                           
The simple linear regression of the data on $Sales and number of customers produced the following...
The simple linear regression of the data on $Sales and number of customers produced the following ANOVA output: ANOVA Source df SS MS F Significance F Regression 46833541 Residual Total 51360495 Complete as much of the ANOVA table as you need to answer the following two questions (Questions 18 and 19): The calculated value of the test statistic used to test the following null and alternative hypotheses Ho: The overall regression model is not significant Ha: The overall regression model...
Consider the data set below. Excel File: data12-33.xls The estimated regression equation is ŷ = 30.33...
Consider the data set below. Excel File: data12-33.xls The estimated regression equation is ŷ = 30.33 - 1.88x. Estimate the standard deviation of ŷ p when x = 3 (to 3 decimals). Develop a 95% confidence interval for the expected value of y when x = 3 (to 2 decimals). (  ,  ) Estimate the standard deviation of an individual value of y when x = 3 (to 2 decimals). Develop a 95% prediction interval for y wh
8. Run a regression analysis on the following bivariate set of data with y as the...
8. Run a regression analysis on the following bivariate set of data with y as the response variable. x y 27.2 68.2 28.1 66.7 28.7 64.6 30.2 66.4 33.7 69.5 31.8 68.3 30.4 67.8 28.6 65.5 32.5 69.4 34.8 67.9 33.3 67.1 28 66.1 - Find the correlation coefficient and report it accurate to three decimal places. r = - What proportion of the variation in y can be explained by the variation in the values of x? Report answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT