Question

In: Chemistry

Use bond-energy data to calculate the enthalpy of formation for eah of the following compounds at...

Use bond-energy data to calculate the enthalpy of formation for eah of the following compounds at 25 C

a) n-Octane, C8H18(g)

b) Napthalene, C10H8(g)

c) Formaldehyde, H2CO(g)

d) Formic acid, HCOOH(g)

Give the most likely reason for the largest discrepancies between your calculated values and the ones in the tables.

Solutions

Expert Solution


Related Solutions

Calculate the standard enthalpy of formation of solid AlCl3 from the following data: 2 Al(s) +...
Calculate the standard enthalpy of formation of solid AlCl3 from the following data: 2 Al(s) + 6 HCl(aq) → 2 AlCl3(aq) + 3 H2(g)                  ΔHo = -1048 kJ HCl(aq) → HCl(g)                  ΔHo = 75 kJ Cl2(g) + H2(g) → 2 HCl(g)                      ΔHo = -186 kJ AlCl3(s) → AlCl3(aq)                                                       ΔHo = -323 kJ
Calculate the enthalpy of oxidation per mole for N2 and for C2H2 (the enthalpy of formation...
Calculate the enthalpy of oxidation per mole for N2 and for C2H2 (the enthalpy of formation of N2O5(g) is 11.30 kJ/mol).
Use standard enthalpy and entropy data from Appendix G to calculate the standard free energy change...
Use standard enthalpy and entropy data from Appendix G to calculate the standard free energy change for the reaction shown here (298 K). What does the computed value for ΔG° say about the spontaneity of this process? C2 H6(g) ⟶ H2(g) + C2 H4(g)
a) Calculate the steric energy or heat of formation for one single bond isomer of trans-benzalacetone...
a) Calculate the steric energy or heat of formation for one single bond isomer of trans-benzalacetone using the usual energy minimization procedure. The result should be a planar molecule. (b) Then deliberately hold the dihedral angle defined by atoms 1, 2, 3, and 4 at 0°, 90°, and 180° and again calculate the energies of the molecule. What is the approximate barrier to rotation about the single bond?
Use the enthalpies of formation in the table below to answer the following questions. Substance Enthalpy...
Use the enthalpies of formation in the table below to answer the following questions. Substance Enthalpy of Formation (kJ/mol), 298 K Oxygen (O2)(g) 0 Methane (CH4)(g) -74.8 Carbon Dioxide (CO2)(g) -393.5 Water (H2O)(g) -241.8 Water (H2O)(l) -285.8 A) Calculate the change in enthalpy for the combustion of methane using the values in the table above (assuming that the system remains at 298 K) for the combustion of methane to form carbon dioxide and gaseous water. B) Repeat this calculation assuming...
Given the following bond-dissociation energies, calculate the average bond enthalpy for the Ti-Cl bond.
Given the following bond-dissociation energies, calculate the average bond enthalpy for the Ti-Cl bond.  
Consider aluminum and oxygen. In their natural states, their standard enthalpy of formation (i.e., the energy...
Consider aluminum and oxygen. In their natural states, their standard enthalpy of formation (i.e., the energy of formation at RTP) is zero. Every kilogram of aluminum has (at RTP) an entropy of 1.05 kJ/K, whereas every kilogram of oxygen has an entropy of 6.41 kJ/K. Aluminum burns fiercely, forming an oxide (Al2O3) and releasing energy. The standard enthalpy of formation of the oxide is –1.67 GJ/kmol. The entropy of the oxide is 51.0 kJ/K per kilomole. According to the second...
Use the following thermodynamic data to calculate ∆S° (universe) for the formation of HBr(g) from its...
Use the following thermodynamic data to calculate ∆S° (universe) for the formation of HBr(g) from its elements at 298K in J/K.   HINT: write the formation reaction for HBr(g) Species        ∆Hf° (kJ/mol)        S° (J/Kmol)                  Species      ∆Hf° (kJ/mol)      S° (J/Kmol) HBr(g)           -36.3                   198.59                               Br2(g)          30.91                245.38 Br2(l)                  0                   152.23                              H2(g)              0                     130.6
1. Calculate the enthalpy change, ΔH, for the formation of 1 mole of strontium carbonate (the...
1. Calculate the enthalpy change, ΔH, for the formation of 1 mole of strontium carbonate (the material that gives the red color in fireworks) from its elements. Sr(s) + C(s) + 1.5 O2(g) → SrCO3(s) Use the following information: 2 Sr(s) + O2(g) → 2 SrO(s) ΔH = -1184 kJ SrO(s) + CO2(g) → SrCO3(s) ΔH = -234 kJ C(s) + O2(g) → CO2(g) ΔH = -394 kJ 2. Write chemical reactions that describe the formation of the following compounds:...
standard enthalpy change of formation
a. Define standard enthalpy change of formation.b. Calculate the standard enthalpy change of formation of methane from the following standard enthalpy changes of combustion:carbon = –394 kJ mol–1hydrogen = –286 kJ mol–1methane = –891 kJ mol–1c. Calculate the standard enthalpy change of combustion of methane using the following bond energies:E(C — H) = +412 kJ mol–1E(O — O) = +496 kJ mol–1E(C — O) = +805 kJ mol–1E(O — H) = +463 kJ mol–1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT