In: Statistics and Probability
The mean water temperature downstream from a discharge pipe at a power plant cooling tower should be no more than 100°F. Past studies has shown that the standard deviation of temperature is 2°F. The water temperature was measured on 10 randomly chosen days, and the results are shown below: 96.15 97.81 97.09 95.08 99.46 100.03 99.74 98.85 95.08 98.71 a. State the null hypothesis and alternative hypothesis for the above problem. b. Is there evidence that the water temperature is acceptable at α = 1%? c. Compute the 95% confidence interval for the mean temperature of water.
a)
Ho :   µ ≥ 100  
Ha :   µ <   100   (Left tail
test)
b)
Level of Significance ,    α =   
0.010  
population std dev ,    σ =   
2.0000  
Sample Size ,   n =    10  
Sample Mean,    x̅ = ΣX/n =   
97.8000  
          
'   '   '  
          
Standard Error , SE = σ/√n =   2/√10=  
0.6325  
Z-test statistic= (x̅ - µ )/SE =   
(97.8-100)/0.6325=   -3.4785  
          
critical z value, z* =      
-2.3263   [Excel formula =NORMSINV(α/no. of tails)
]
          
p-Value   =   0.0003   [ Excel
formula =NORMSDIST(z) ]
Decision:   p-value≤α, Reject null hypothesis
      
Conclusion: There is enough evidence that   the water
temperature is acceptable
c)
Level of Significance ,    α =   
0.05          
'   '   '      
   
z value=   z α/2=   1.960   [Excel
formula =NORMSINV(α/2) ]      
          
       
Standard Error , SE = σ/√n =   2/√10=  
0.6325          
margin of error, E=Z*SE =   1.9600  
*   0.6325   =   1.2396
          
       
confidence interval is       
           
Interval Lower Limit = x̅ - E =    97.80  
-   1.2396   =   96.5604
Interval Upper Limit = x̅ + E =    97.80  
-   1.2396   =   99.0396
95%   confidence interval is (  
96.56   < µ <   99.04  
)