Question

In: Statistics and Probability

1.-Interpret the following regression model Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -7.819e+05 7.468e+04 -10.470...

1.-Interpret the following regression model
Coefficients:
                        Estimate Std. Error t value Pr(>|t|)    
(Intercept)           -7.819e+05  7.468e+04 -10.470  < 2e-16 ***
Lot.Size              -5.359e-01  1.163e-01  -4.610 4.67e-06 ***
Square.Feet            1.108e+02  1.109e+01   9.986  < 2e-16 ***
Num.Baths              2.985e+04  9.650e+03   3.094  0.00204 ** 
API.2011               1.226e+03  9.034e+01  13.568  < 2e-16 ***
dis_coast             -7.706e+00  2.550e+00  -3.022  0.00259 ** 
dis_fwy                1.617e+01  1.232e+01   1.312  0.18995    
dis_down               5.364e+00  3.299e+00   1.626  0.10429    
I(dis_fwy * dis_down) -4.414e-04  5.143e-04  -0.858  0.39098    
Pool                   1.044e+05  2.010e+04   5.194 2.59e-07 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 141400 on 832 degrees of freedom
Multiple R-squared:  0.554,     Adjusted R-squared:  0.5492 
F-statistic: 114.8 on 9 and 832 DF,  p-value: < 2.2e-16

Solutions

Expert Solution

here the null hypothesis

H0: Lot.Size=Square.Feet=Num.Bath=API.2011=dis_coast=dis_fwy=dis_down=I(dis_fwy*dis_down)=Pool=0

Ha: atleast one of the is different from zero

since the F-statisitc has p-value is less than typical level of significance alpha=0.05, so we reject H0 and conclude that atleast one of the regression coefficient is different from zero.

Lot.Size, Square.Feet, Num.Bath, API.2011, dis_coast are significant to explain the dependent variables but

dis_fwy , dis_down and I(dis_fwy * dis_down) are not significant, so these three may be removed from the model and re-analyze the data.


Related Solutions

When I ran a bivariate regression, I got the following table Coefficients: Estimate Std. Error z...
When I ran a bivariate regression, I got the following table Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.8681 2.8754 3.780 0.000157 *** ETHWAR -1.0170 0.4524 -2.248 0.024570 * When I ran a multivariate regression, I got the following table Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 10.811 2.987 3.619 0.000296 *** ETHWAR -13.804 4844.876 -0.003 0.997727 CIVTOT 12.730 4844.877 0.003 0.997903 Why did the p-value for ETHWAR change? And why did it change so dramatically?
Below is a partial regression output, choose the correct choice t value Pr(>|t|) (Intercept) 6.808 3.88e-11...
Below is a partial regression output, choose the correct choice t value Pr(>|t|) (Intercept) 6.808 3.88e-11 *** crim -2.885 0.004135 ** zn 3.405 0.000731 *** indus 0.519 0.603807 chas 2.869 0.004342 ** nox -4.683 3.94e-06 *** rm 8.153 5.20e-15 *** age -0.402 0.688147 dis -6.821 3.57e-11 *** rad 4.188 3.50e-05 *** tax -3.017 0.002723 ** ptratio -7.2 2.55e-12 *** black 2.8 0.005310 ** lstat -8.1 4.07e-15 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
Parameter estimates: intercept: 14179.871 3298.484 4.30 0.0003* (estimate Std Error tRatio Prob>t ) InCostAid: 0.7768753 0.254022...
Parameter estimates: intercept: 14179.871 3298.484 4.30 0.0003* (estimate Std Error tRatio Prob>t ) InCostAid: 0.7768753 0.254022 3.06 0,0058*   (estimate Std Error tRatio Prob>t ) Baruch College has substantially less average debt compared to the other schools with similar in-state costs. Figure 10.13 contains JMP output for the simple linear regression of AveDebt on InCostAid with this case removed. a) State the least-squares regression line. b) The University of North Florida is one school in this sample. It has an in-state...
true or fulse q1 In a regression model it is given that the estimate of intercept...
true or fulse q1 In a regression model it is given that the estimate of intercept is 5 and the estimate of slope is 4 , then the value of dependent variable y for x = 2 is 14. True False q2 When looking at the waiting line at SEU daam system, we can assume that calling population is limited. True False q3 A coffee machine can serve customers at the rate of 20 per hour . The customers arrive...
Coefficients Standard Error t-Stat    P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept Calories...
Coefficients Standard Error t-Stat    P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept Calories Calories (x) Fat Content (y) Predicted y value Residual 140 7 5.75 1.25 160 8 6.77 1.23 70 2 2.18 -0.18 120 3.5 4.73 -1.23 170 16 7.28 8.72 290 12 13.4 -1.4 210 17 9.32 7.68 190 12 8.3 3.7 210 1.5 9.32 -7.82 130 3.5 5.24 -1.74 150 4.5 6.26 -1.76 160 12 6.77 5.23 150 7 6.26 0.74 140 6 5.75...
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .941a...
Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .941a .885 .872 1.00528 a. Predictors: (Constant), SelfControl, NumStrains ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 132.570 2 66.285 65.590 .000b Residual 17.180 17 1.011 Total 149.750 19 a. Dependent Variable: AgeFirstArrest b. Predictors: (Constant), SelfControl, NumStrains Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig. 95.0% Confidence Interval for B Collinearity Statistics B Std. Error Beta Lower Bound Upper Bound...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of...
Interpret the tables below Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .454a .206 .206 2.556 a. Predictors: (Constant), Trust in Government Index (higher scores=more trust), Handling of Economy Index (higher scores=higher satisfaction) ANOVAa Model Sum of Squares df Mean Square F Sig. 1 Regression 58566.582 2 29283.291 4481.186 .000b Residual 225395.511 34492 6.535 Total 283962.093 34494 a. Dependent Variable: Q46a. Level of democracy: today b. Predictors: (Constant), Trust in Government Index (higher...
b) Interpret the coefficients in the estimated regression model of Sales on Csales. c) Before estimating...
b) Interpret the coefficients in the estimated regression model of Sales on Csales. c) Before estimating the model, the manager claimed that for every 1 million increase in Csales, Sales go down by 2 million. Is there evidence from the estimated model that she was not correct? Answer by constructing an appropriate 95% confidence interval. d) What is the correlation between Sales and Csales? Region Sales Advertising Promotions Csales Selkirk 101.8 1.3 0.2 20.4 Csales=main competitor's sales Susquehanna 44.4 0.7...
For a regression with log(bweight) as the dependent variable, we have Variable Estimate Standard Error Constant/Intercept...
For a regression with log(bweight) as the dependent variable, we have Variable Estimate Standard Error Constant/Intercept 4.66 0.029 Male 0.03 0.010 Motheduc 0.002 0.002 lfaminc 0.02 0.006 You expect an increase in family income to increase birth weight. Test this hypothesis at the 1% level of significance. Make sure you explicitly include all of the steps.
Estimate the demand curve using regression analysis. Write down the equational form. Interpret the coefficients, statistical...
Estimate the demand curve using regression analysis. Write down the equational form. Interpret the coefficients, statistical significance and R2. What are the limitations of your specification (omitted variables, correlation vs. causality)? Quantity Price 84 59 80 65 85 54 83 61 81 64 84 58 87 48 78 68 82 63 76 70 79 65 75 80
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT