Question

In: Statistics and Probability

> x=c(rep(1,5),rep(2,5)) > x1=as.factor(x) > e=rnorm(10,0,3) > y=4*x+e > fit=lm(y~x1) > summary(fit) Call: lm(formula = y...

> x=c(rep(1,5),rep(2,5))

> x1=as.factor(x)

> e=rnorm(10,0,3)

> y=4*x+e

> fit=lm(y~x1)

> summary(fit)

Call:

lm(formula = y ~ x1)

Residuals:

    Min      1Q Median      3Q       Max

-4.7426 -2.4395 0.5468 2.1125       5.0009

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)   5.399     1.514     3.565 0.00734 *

x12           3.173     2.142     1.482 0.17670 ***

- - -

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’   0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.386 on 8 degrees of freedom

Multiple R-squared: 0.2153,   Adjusted R-squared: 0.1173

F-statistic: 2.195 on 1 and 8 DF, p-value: 0.1767

> fit=lm(y~x1-1)

> summary(fit)

Call:

lm(formula = y ~ x1 - 1)

Residuals:

    Min      1Q Median      3Q     Max

-4.7426 -2.4395 0.5468 2.1125     

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

x11   5.399     1.514   3.565    x11   0.007345 *

x12   8.572     1.514   5.661    x12   0.000476 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’   0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.386 on 8 degrees of freedom

Multiple R-squared: 0.8484,   Adjusted R-squared: 0.8104

F-statistic: 22.38 on 2 and 8 DF, p-value: 0.0005289

>fit1=lm(y~x1,contrasts=list(X1=”contr.sum”))

Summary(fit1)

the question is what is summary(fit1)

Solutions

Expert Solution

Here summary(fit1) shows the test for the contrast of the X1 i.e. the treatment effect. From the p-value, we can say that the test is accepted as it is >0.05.


Related Solutions

Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X)...
Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X) = var(Y) = 10. A new random variable is defined as: W = X+2Y+2. a. Find E[W] and var[W] if X and Y are independent. b. Find E[W] and var[W] if E[XY] = 20. c. If we find that E[XY] = E[X]E[Y], what do we know about the relationship between the random variables X and Y?
Given: E[x] = 4, E[y] = 6, Var(x) = 2, Var(y) = 1, and cov(x,y) =...
Given: E[x] = 4, E[y] = 6, Var(x) = 2, Var(y) = 1, and cov(x,y) = 0.2 Find a lower bound on (5 < x + y < 10). State the theorem used.
Consider the ODE y"+ 4 y'+ 4 y = 5 e^(− 2 x ). ( a)...
Consider the ODE y"+ 4 y'+ 4 y = 5 e^(− 2 x ). ( a) Verify that y 1 ( x) = e − 2 x and y 2 ( x) = xe − 2 x satisfy the corresponding homogeneous equation. (b) Use the Superposition Principle, with appropriate coefficients, to state the general solution y h ( x ) of the corresponding homogeneous equation. (c) Verify that y p ( x) = 52 x 2 e − 2 x...
E(Y) = 4, E(X) = E(Y+2), Var(X) = 5, Var(Y) = Var(2X+2) a. What is E(2X...
E(Y) = 4, E(X) = E(Y+2), Var(X) = 5, Var(Y) = Var(2X+2) a. What is E(2X -2Y)? b. What is Var(2X-Y+2)? c. What is SD(3Y-3X)? 2) In a large community, 65% of the residents want to host an autumn community fair. The rest of the residents answer either disagree or no opinion on this proposal. A sample of 18 residents was randomly chosen and asked for their opinions. a) What is th probability that the residents answer either disagree or...
For the differential equation (2 -x^4)y" + (2*x -4)y' + (2*x^2)y=0. Compute the recursion formula for...
For the differential equation (2 -x^4)y" + (2*x -4)y' + (2*x^2)y=0. Compute the recursion formula for the coefficients of the power series solution centered at x(0)=0 and use it to compute the first three nonzero terms of the solution with y(0)= 12 , y'(0) =0
Let f (x, y) = c, 0 ≤ y ≤ 4, y ≤ x ≤ y...
Let f (x, y) = c, 0 ≤ y ≤ 4, y ≤ x ≤ y + 1,  be the joint pdf of X and Y. (a) (3 pts) Find c and sketch the region for which f (x, y) > 0. (b) (3 pts) Find fX(x), the marginal pdf of X. (c) (3 pts) Find fY(y), the marginal pdf of Y. (d) (3 pts) Find P(X ≤ 3 − Y). (e) (4 pts) E(X) and Var(X). (f) (4 pts) E(Y)...
Evaluate ∫ C ( 2 x − y ) d x + ( 4 y −...
Evaluate ∫ C ( 2 x − y ) d x + ( 4 y − x ) d y where C consists of the line segment from( 0 , 1 ) to ( 1 , 0 ), followed by the line segment from ( 1 , 0 ) to( 3 , 0 ), followed by the line segment from ( 3 , 0 ) to ( 2 , 2 ). Submit answer as a number rounded to two decimal...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3),...
(1) z=ln(x^2+y^2), y=e^x. find ∂z/∂x and dz/dx. (2) f(x1, x2, x3) = x1^2*x2+3sqrt(x3), x1 = sqrt(x3), x2 = lnx3. find ∂f/∂x3, and df/dx3.
w x y z a 3,2 4,1 2,3 0,4 b 4,4 2,5 1,2 0,4 c 1,3...
w x y z a 3,2 4,1 2,3 0,4 b 4,4 2,5 1,2 0,4 c 1,3 3,1 3,1 4,2 d 5,1 3,1 2,3 1,4 a) for this game, use iterated elimination of strictly dominated strategies. explain each step of your work. b) what strategy profiles survive IESDS? what are the Nash equilibrium of this game?
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x <...
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x < infinity and 0 < y < infinity with parameters λ > 0 and μ > 0 a) Find c such that this is a PDF. b) Show that X and Y are Independent c) What is P(1 < X < 2, 0 < Y < 5) ? Leave in exponential form d) Find the marginal distribution of Y, f(y) e) Find E(Y)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT