In: Statistics and Probability
1.
a. in a study, 68% of 905 randomly selected adults said they believe in the republicans favor the rich. If the margin of error was 4 percentage points, what is the confidence level used for the proportion? a federal report indicated that 26% of children under age 6 live in poverty in alabama, an increase over previous years. how large a sample is needed to estimate the true proportion of children under age 6 living in poverty in alabama within 5% with 99% confidence
n= _____
b. Obesity is defined as a body mass index (BMI) of 30 kg/m^2 or more. A 99% confidence interval for the percentage of U.S. men aged 70 years and over who were obese were found to be 20.0% to 21.0
n= ____ (it is NOT 43, 259)
c. it is believed that 25% of u.s. homes have direct satellite television receiver. 90% confidence within 2 percentage points?
n= _____
d. a recent study indicated that 23% of the 160 women over age 55 in the study were widows. how large a sample must you take to be 90% confident that the estimate is within 0.05 of the true proportion of women over age 55
n=_____
e. in a recent year, a study found that 78% of adults ages 18-29 had internet access at home. Did research on 182 undergraduates total and found that 166 had access. Estimate the true proportion with 90% confidence.
_____ < p < ____
a)
margin of error= 0.04
Sample Proportion ,    p̂ = x/n =   
0.6800
      
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.015506
margin of error , E = Z*SE
Zα/2=E/SE = 0.04/0.0155 = 2.576
α=0.01
confidence level used= 99%
=====================
a)
sample proportion ,   p̂ =   
0.26          
           
   
sampling error ,    E =   0.05  
           
           
Confidence Level ,   CL=   0.99  
           
           
          
           
           
alpha =   1-CL =   0.01  
           
           
Z value =    Zα/2 =    2.576   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
2.576   /   0.05   ) ² *  
0.26   * ( 1 -   0.26   ) =
   510.6216
          
           
           
          
           
           
so,Sample Size required=      
511          
           
   
=====================
b)
confidence interval is      
           
lower limit =    0.2       upper
limit=   0.21  
sample proportion= (lower limit+upper limit)/2= (  
0.2   +   0.21   ) / 2 =  
0.205
margin of error = (upper limit-lower limit)/2= (  
0.2   -   0.21   ) / 2 =  
0.005
Confidence Level ,   CL=   0.99  
           
           
          
           
           
alpha =   1-CL =   0.01  
           
           
Z value =    Zα/2 =    2.576   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
2.576   /   0.005   ) ² *  
0.21   * ( 1 -   0.21   ) =
   43252.8909
          
           
           
          
           
           
so,Sample Size required=      
43253          
           
   
c)
sample proportion ,   p̂ =   
0.25          
           
   
sampling error ,    E =   0.02  
           
           
Confidence Level ,   CL=   0.90  
           
           
          
           
           
alpha =   1-CL =   0.1  
           
           
Z value =    Zα/2 =    1.645   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
1.645   /   0.02   ) ² *  
0.25   * ( 1 -   0.25   ) =
   1268.2235
          
           
           
          
           
           
so,Sample Size required=      
1269          
          
   
d)
sample proportion ,   p̂ =   
0.23          
           
   
sampling error ,    E =   0.05  
           
           
Confidence Level ,   CL=   0.90  
           
           
          
           
           
alpha =   1-CL =   0.1  
           
           
Z value =    Zα/2 =    1.645   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
1.645   /   0.05   ) ² *  
0.23   * ( 1 -   0.23   ) =
   191.6607
          
           
           
          
           
           
so,Sample Size required=      
192          
           
   
e)
Level of Significance,   α =   
0.10          
Number of Items of Interest,   x =  
166          
Sample Size,   n =    182  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.9121          
z -value =   Zα/2 =    1.645   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.020990          
margin of error , E = Z*SE =    1.645  
*   0.02099   =   0.0345
          
       
90%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.91209  
-   0.03453   =   0.878
Interval Upper Limit = p̂ + E =   0.91209  
+   0.03453   =   0.947
          
       
90%   confidence interval is (  
0.878   < p <    0.947  
)
| please revert for doubts and | 
| please UPVOTE the solution |